35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Relationships between Bone Turnover and Energy Metabolism

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It is well established that diabetes can be detrimental to bone health, and its chronic complications have been associated with an increased risk of osteoporotic fracture. However, there is growing evidence that the skeleton plays a key role in a whole-organism approach to physiology. The hypothesis that bone may be involved in the regulation of physiological functions, such as insulin sensitivity and energy metabolism, has been suggested. Given the roles of insulin, adipokines, and osteocalcin in these pathways, the need for a more integrative conceptual approach to physiology is emphasized. Recent findings suggest that bone plays an important role in regulating intermediary metabolism, being possibly both a target of diabetic complications and a potential pathophysiologic factor in the disease itself. Understanding the relationships between bone turnover and glucose metabolism is important in order to develop treatments that might reestablish energy metabolism and bone health. This review describes new insights relating bone turnover and energy metabolism that have been reported in the literature.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Effects of obesity on bone metabolism

          Jay Cao (2011)
          Obesity is traditionally viewed to be beneficial to bone health because of well-established positive effect of mechanical loading conferred by body weight on bone formation, despite being a risk factor for many other chronic health disorders. Although body mass has a positive effect on bone formation, whether the mass derived from an obesity condition or excessive fat accumulation is beneficial to bone remains controversial. The underline pathophysiological relationship between obesity and bone is complex and continues to be an active research area. Recent data from epidemiological and animal studies strongly support that fat accumulation is detrimental to bone mass. To our knowledge, obesity possibly affects bone metabolism through several mechanisms. Because both adipocytes and osteoblasts are derived from a common multipotential mesenchymal stem cell, obesity may increase adipocyte differentiation and fat accumulation while decrease osteoblast differentiation and bone formation. Obesity is associated with chronic inflammation. The increased circulating and tissue proinflammatory cytokines in obesity may promote osteoclast activity and bone resorption through modifying the receptor activator of NF-κB (RANK)/RANK ligand/osteoprotegerin pathway. Furthermore, the excessive secretion of leptin and/or decreased production of adiponectin by adipocytes in obesity may either directly affect bone formation or indirectly affect bone resorption through up-regulated proinflammatory cytokine production. Finally, high-fat intake may interfere with intestinal calcium absorption and therefore decrease calcium availability for bone formation. Unraveling the relationship between fat and bone metabolism at molecular level may help us to develop therapeutic agents to prevent or treat both obesity and osteoporosis. Obesity, defined as having a body mass index ≥ 30 kg/m2, is a condition in which excessive body fat accumulates to a degree that adversely affects health [1]. The rates of obesity rates have doubled since 1980 [2] and as of 2007, 33% of men and 35% of women in the US are obese [3]. Obesity is positively associated to many chronic disorders such as hypertension, dyslipidemia, type 2 diabetes mellitus, coronary heart disease, and certain cancers [4-6]. It is estimated that the direct medical cost associated with obesity in the United States is ~$100 billion per year [7]. Bone mass and strength decrease during adulthood, especially in women after menopause [8]. These changes can culminate in osteoporosis, a disease characterized by low bone mass and microarchitectural deterioration resulting in increased bone fracture risk. It is estimated that there are about 10 million Americans over the age of 50 who have osteoporosis while another 34 million people are at risk of developing the disease [9]. In 2001, osteoporosis alone accounted for some $17 billion in direct annual healthcare expenditure. Several lines of evidence suggest that obesity and bone metabolism are interrelated. First, both osteoblasts (bone forming cells) and adipocytes (energy storing cells) are derived from a common mesenchymal stem cell [10] and agents inhibiting adipogenesis stimulated osteoblast differentiation [11-13] and vice versa, those inhibiting osteoblastogenesis increased adipogenesis [14]. Second, decreased bone marrow osteoblastogenesis with aging is usually accompanied with increased marrow adipogenesis [15,16]. Third, chronic use of steroid hormone, such as glucocorticoid, results in obesity accompanied by rapid bone loss [17,18]. Fourth, both obesity and osteoporosis are associated with elevated oxidative stress and increased production of proinflammatory cytokines [19,20]. At present, the mechanisms for the effects of obesity on bone metabolism are not well defined and will be the focus of this review.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice.

            The osteoblast-specific secreted molecule osteocalcin behaves as a hormone regulating glucose metabolism and fat mass in two mutant mouse strains. Here, we ask two questions: is the action of osteocalcin on beta cells and adipocytes elicited by the same concentrations of the molecule, and more importantly, does osteocalcin regulate energy metabolism in WT mice? Cell-based assays using isolated pancreatic islets, a beta cell line, and primary adipocytes showed that picomolar amounts of osteocalcin are sufficient to regulate the expression of the insulin genes and beta cell proliferation markers, whereas nanomolar amounts affect adiponectin and Pgc1alpha expression in white and brown adipocytes, respectively. In vivo the same difference exists in osteocalcin's ability to regulate glucose metabolism on the one hand and affect insulin sensitivity and fat mass on the other hand. Furthermore, we show that long-term treatment of WT mice with osteocalcin can significantly weaken the deleterious effect on body mass and glucose metabolism of gold thioglucose-induced hyperphagia and high-fat diet. These results establish in WT mice the importance of this novel molecular player in the regulation of glucose metabolism and fat mass and suggest that osteocalcin may be of value in the treatment of metabolic diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Adiponectin: action, regulation and association to insulin sensitivity.

              Adiponectin is a novel adipocyte-specific protein, which, it has been suggested, plays a role in the development of insulin resistance and atherosclerosis. Although it circulates in high concentrations, adiponectin levels are lower in obese subjects than in lean subjects. Apart from negative correlations with measures of adiposity, adiponectin levels are also reduced in association with insulin resistance and type 2 diabetes. Visceral adiposity has been shown to be an independent negative predictor of adiponectin. Thus, most features of the metabolic syndrome's negative associations with adiponectin have been shown. Adiponectin levels seem to be reduced prior to the development of type 2 diabetes, and administration of adiponectin has been accompanied by lower plasma glucose levels as well as increased insulin sensitivity. Furthermore, reduced expression of adiponectin has been associated with some degree of insulin resistance in animal studies indicating a role for hypoadiponectinaemia in relation to insulin resistance. The primary mechanisms by which adiponectin enhance insulin sensitivity appears to be through increased fatty acid oxidation and inhibition of hepatic glucose production. Adiponectin levels are increased by thiazoledinedione treatment, and this effect might be important for the enhanced insulin sensitivity induced by thiazolidinediones. In contrast, adiponectin levels are reduced by pro-inflammatory cytokines especially tumour necrosis factor-alpha. In summary, adiponectin in addition to possible anti-inflammatory and anti-atherogenic effects appears to be an insulin enhancer, with potential as a new pharmacologic treatment modality of the metabolic syndrome and type 2 diabetes.
                Bookmark

                Author and article information

                Journal
                J Diabetes Res
                J Diabetes Res
                JDR
                Journal of Diabetes Research
                Hindawi
                2314-6745
                2314-6753
                2017
                11 June 2017
                : 2017
                : 9021314
                Affiliations
                1Instituto Superior de Ciências da Saúde Egas Moniz (ISCSEM), Campus Universitário-Quinta da Granja, 2829-511 Monte de Caparica, Portugal
                2Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Campus Universitário-Quinta da Granja, 2829-511 Monte de Caparica, Portugal
                3Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
                Author notes
                *Tânia A. P. Fernandes: tania.apf@ 123456gmail.com

                Academic Editor: Toshiyasu Sasaoka

                Author information
                http://orcid.org/0000-0002-8384-9602
                http://orcid.org/0000-0002-3654-8612
                http://orcid.org/0000-0002-8558-6754
                Article
                10.1155/2017/9021314
                5485508
                28695134
                a082b258-411f-47a2-81f6-b09bbce16c85
                Copyright © 2017 Tânia A. P. Fernandes et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 23 March 2017
                : 12 May 2017
                : 22 May 2017
                Funding
                Funded by: Egas Moniz-Cooperativa de Ensino Superior
                Funded by: CRL
                Categories
                Review Article

                Comments

                Comment on this article