2
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Expression of peroxiredoxins and thioredoxins in the mouse spinal cord during embryonic development.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Reactive oxygen and nitrogen species (ROS/RNS) are natural byproducts of cellular metabolism. Although these molecules are deleterious at high concentrations, moderate levels of ROS/RNS are essential for normal cell function and take part in numerous cellular processes. The regulation of ROS/RNS is largely attended by peroxiredoxins (Prdxs) and their main reductants, thioredoxins (Trxs). Through their oxidoreductase activities, the members of the Trx/Prdx system can also affect certain cellular processes, notably many implicated in central nervous system (CNS) development. Although several studies have investigated the expression of Prdxs and Trxs in mouse, rat, and human adult CNS, few data are available concerning embryonic stages. In this work, we use immunofluorescence analyses to study the distribution of these enzymes during prenatal mouse spinal cord development. Our results highlight several patterns that contrast with available data for the adult. Indeed, Prdx1, Prdx4, and Prdx6, which are expressed in glial cells in the adult CNS, present clear neuronal localization in mouse spinal cord during embryonic development. Additionally, Prdx1, Prdx2, and to a lesser extent Prdx4, Prdx6, and Trx1 are localized mainly in the nucleus of neural cells. Finally, we identified a consistent, intense expression of all Prdxs and Trxs in groups of cells located in ventral regions of the spinal cord that express motor neuronal markers. These striking expression patterns suggest novel functions of these enzymes at these stages and offer clues to the role of the Trx/Prdx system during embryonic development of the spinal cord.

          Related collections

          Author and article information

          Journal
          J. Comp. Neurol.
          The Journal of comparative neurology
          Wiley-Blackwell
          1096-9861
          0021-9967
          Dec 01 2015
          : 523
          : 17
          Affiliations
          [1 ] Group of Animal Molecular and Cellular Biology, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium.
          Article
          10.1002/cne.23807
          25975898
          a085815a-b6d8-4e70-9765-848a30b597ec

          Comments

          Comment on this article