8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Measuring Post-transfusion Recovery and Survival of Red Blood Cells: Strengths and Weaknesses of Chromium-51 Labeling and Alternative Methods

      brief-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The proportion of transfused red blood cells (RBCs) that remain in circulation is an important surrogate marker of transfusion efficacy and contributes to predict the potential benefit of a transfusion process. Over the last 50 years, most of the transfusion recovery data were generated by chromium-51 ( 51Cr)-labeling studies and were predominantly performed to validate new storage systems and new processes to prepare RBC concentrates. As a consequence, our understanding of transfusion efficacy is strongly dependent on the strengths and weaknesses of 51Cr labeling in particular. Other methods such as antigen mismatch or biotin-based labeling can bring relevant information, for example, on the long-term survival of transfused RBC. These radioactivity-free methods can be used in patients including from vulnerable groups. We provide an overview of the methods used to measure transfusion recovery in humans, compare their strengths and weaknesses, and discuss their potential limitations. Also, based on our understanding of the spleen-specific filtration of damaged RBC and historical transfusion recovery data, we propose that RBC deformability and morphology are storage lesion markers that could become useful predictors of transfusion recovery. Transfusion recovery can and should be accurately explored by more than one method. Technical optimization and clarification of concepts is still needed in this important field of transfusion and physiology.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          Red cell membrane: past, present, and future.

          As a result of natural selection driven by severe forms of malaria, 1 in 6 humans in the world, more than 1 billion people, are affected by red cell abnormalities, making them the most common of the inherited disorders. The non-nucleated red cell is unique among human cell type in that the plasma membrane, its only structural component, accounts for all of its diverse antigenic, transport, and mechanical characteristics. Our current concept of the red cell membrane envisions it as a composite structure in which a membrane envelope composed of cholesterol and phospholipids is secured to an elastic network of skeletal proteins via transmembrane proteins. Structural and functional characterization of the many constituents of the red cell membrane, in conjunction with biophysical and physiologic studies, has led to detailed description of the way in which the remarkable mechanical properties and other important characteristics of the red cells arise, and of the manner in which they fail in disease states. Current studies in this very active and exciting field are continuing to produce new and unexpected revelations on the function of the red cell membrane and thus of the cell in health and disease, and shed new light on membrane function in other diverse cell types.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cell rigidity and shape override CD47's "self"-signaling in phagocytosis by hyperactivating myosin-II.

            A macrophage engulfs another cell or foreign particle in an adhesive process that often activates myosin-II, unless the macrophage also engages "marker of self" CD47 that inhibits myosin. For many cell types, adhesion-induced activation of myosin-II is maximized by adhesion to a rigid rather than a flexible substrate. Here we demonstrate that rigidity of a phagocytosed cell also hyperactivates myosin-II, which locally overwhelms self-signaling at a phagocytic synapse. Cell stiffness is one among many factors including shape that changes in erythropoiesis, in senescence and in diseases ranging from inherited anemias and malaria to cancer. Controlled stiffening of normal human red blood cells (RBCs) in different shapes does not compromise CD47's interaction with the macrophage self-recognition receptor signal regulatory protein alpha (SIRPA). Uptake of antibody-opsonized RBCs is always fastest with rigid RBC discocytes, which also show that maximal active myosin-II at the synapse can dominate self-signaling by CD47. Rigid but rounded RBC stomatocytes signal self better than rigid RBC discocytes, highlighting the effects of shape on CD47 inhibition. Physical properties of phagocytic targets thus regulate self signaling, as is relevant to erythropoiesis, to clearance of rigid RBCs after blood storage, clearance of rigid pathological cells such as thalassemic or sickle cells, and even to interactions of soft/stiff cancer cells with macrophages. © 2015 by The American Society of Hematology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Prolonged red cell storage before transfusion increases extravascular hemolysis

              Some countries have limited the maximum allowable storage duration for red cells to 5 weeks before transfusion. In the US, red blood cells can be stored for up to 6 weeks, but randomized trials have not assessed the effects of this final week of storage on clinical outcomes.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Med (Lausanne)
                Front Med (Lausanne)
                Front. Med.
                Frontiers in Medicine
                Frontiers Media S.A.
                2296-858X
                15 May 2018
                2018
                : 5
                : 130
                Affiliations
                [1] 1Biologie Intégrée du Globule Rouge UMR_S1134, INSERM, Univ. Paris Diderot, Sorbonne Paris Cité, Univ. de la Réunion, Univ. des Antilles , Paris, France
                [2] 2Institut National de la Transfusion Sanguine , Paris, France
                [3] 3Laboratoire d’Excellence GR-Ex , Paris, France
                [4] 4Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications U1163/CNRS ERL 8254, INSERM, CNRS, Univ Paris Descartes, Sorbonne Paris Cité , Paris, France
                [5] 5Université Paris Descartes , Paris, France
                [6] 6Assistance publique des hôpitaux de Paris , Paris, France
                Author notes

                Edited by: Michel Prudent, Transfusion Interrégionale CRS SA, Switzerland

                Reviewed by: Dirk De Korte, Sanquin, Netherlands; Maxime Desmarets, Université Bourgogne Franche-Comté, France

                *Correspondence: Pascal Amireault, pamireault@ 123456ints.fr

                Specialty section: This article was submitted to Hematology, a section of the journal Frontiers in Medicine

                Article
                10.3389/fmed.2018.00130
                5962717
                a0956519-113d-41aa-a5cd-47e6c83e270a
                Copyright © 2018 Roussel, Buffet and Amireault.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 15 January 2018
                : 19 April 2018
                Page count
                Figures: 0, Tables: 1, Equations: 0, References: 84, Pages: 8, Words: 7224
                Funding
                Funded by: Agence Nationale de la Recherche 10.13039/501100001665
                Award ID: ANR-11-LABX-0051, ANR-11-IDEX-0005-02
                Categories
                Medicine
                Perspective

                transfusion recovery,red blood cell,spleen,red blood cell morphology,red blood cell deformability,storage lesion

                Comments

                Comment on this article