29
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      T-Cell Response to Viral Hemorrhagic Fevers

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Viral hemorrhagic fevers (VHF) are a group of clinically similar diseases that can be caused by enveloped RNA viruses primarily from the families Arenaviridae, Filoviridae, Hantaviridae, and Flaviviridae. Clinically, this group of diseases has in common fever, fatigue, dizziness, muscle aches, and other associated symptoms that can progress to vascular leakage, bleeding and multi-organ failure. Most of these viruses are zoonotic causing asymptomatic infections in the primary host, but in human beings, the infection can be lethal. Clinical and experimental evidence suggest that the T-cell response is needed for protection against VHF, but can also cause damage to the host, and play an important role in disease pathogenesis. Here, we present a review of the T-cell immune responses to VHF and insights into the possible ways to improve counter-measures for these viral agents.

          Related collections

          Most cited references206

          • Record: found
          • Abstract: found
          • Article: not found

          Efficacy and Long-Term Safety of a Dengue Vaccine in Regions of Endemic Disease.

          A candidate tetravalent dengue vaccine is being assessed in three clinical trials involving more than 35,000 children between the ages of 2 and 16 years in Asian-Pacific and Latin American countries. We report the results of long-term follow-up interim analyses and integrated efficacy analyses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A global perspective on hantavirus ecology, epidemiology, and disease.

            Hantaviruses are enzootic viruses that maintain persistent infections in their rodent hosts without apparent disease symptoms. The spillover of these viruses to humans can lead to one of two serious illnesses, hantavirus pulmonary syndrome and hemorrhagic fever with renal syndrome. In recent years, there has been an improved understanding of the epidemiology, pathogenesis, and natural history of these viruses following an increase in the number of outbreaks in the Americas. In this review, current concepts regarding the ecology of and disease associated with these serious human pathogens are presented. Priorities for future research suggest an integration of the ecology and evolution of these and other host-virus ecosystems through modeling and hypothesis-driven research with the risk of emergence, host switching/spillover, and disease transmission to humans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Epidemiology of dengue: past, present and future prospects

              Dengue is currently regarded globally as the most important mosquito-borne viral disease. A history of symptoms compatible with dengue can be traced back to the Chin Dynasty of 265–420 AD. The virus and its vectors have now become widely distributed throughout tropical and subtropical regions of the world, particularly over the last half-century. Significant geographic expansion has been coupled with rapid increases in incident cases, epidemics, and hyperendemicity, leading to the more severe forms of dengue. Transmission of dengue is now present in every World Health Organization (WHO) region of the world and more than 125 countries are known to be dengue endemic. The true impact of dengue globally is difficult to ascertain due to factors such as inadequate disease surveillance, misdiagnosis, and low levels of reporting. Currently available data likely grossly underestimates the social, economic, and disease burden. Estimates of the global incidence of dengue infections per year have ranged between 50 million and 200 million; however, recent estimates using cartographic approaches suggest this number is closer to almost 400 million. The expansion of dengue is expected to increase due to factors such as the modern dynamics of climate change, globalization, travel, trade, socioeconomics, settlement and also viral evolution. No vaccine or specific antiviral therapy currently exists to address the growing threat of dengue. Prompt case detection and appropriate clinical management can reduce the mortality from severe dengue. Effective vector control is the mainstay of dengue prevention and control. Surveillance and improved reporting of dengue cases is also essential to gauge the true global situation as indicated in the objectives of the WHO Global Strategy for Dengue Prevention and Control, 2012–2020. More accurate data will inform the prioritization of research, health policy, and financial resources toward reducing this poorly controlled disease. The objective of this paper is to review historical and current epidemiology of dengue worldwide and, additionally, reflect on some potential reasons for expansion of dengue into the future.
                Bookmark

                Author and article information

                Journal
                Vaccines (Basel)
                Vaccines (Basel)
                vaccines
                Vaccines
                MDPI
                2076-393X
                22 January 2019
                March 2019
                : 7
                : 1
                : 11
                Affiliations
                [1 ]Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia; fcelis@ 123456ihv.umaryland.edu or federico.perdomo@ 123456usco.edu.co
                [2 ]Institute of Human Virology, School of Medicine, University of Maryland; Baltimore, MD 21201, USA; msalvato@ 123456ihv.umaryland.edu (M.S.S.); smmoreno@ 123456ihv.umaryland.edu (S.M.-M.)
                Author notes
                [* ]Correspondence: jczapata@ 123456ihv.umaryland.edu ; Tel.: +1-410-706-4611
                Author information
                https://orcid.org/0000-0003-0119-8306
                Article
                vaccines-07-00011
                10.3390/vaccines7010011
                6466054
                30678246
                a09df2fc-a55f-4a0e-a32c-0e031e80b0b7
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 18 December 2018
                : 19 January 2019
                Categories
                Review

                viral hemorrhagic fever,lassa virus,ebola virus,hantavirus,yellow fever virus,dengue virus,t-cells,vaccine,interferon-gamma,tumor necrosis factor-alpha

                Comments

                Comment on this article