33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Plant Size as Determinant of Species Richness of Herbivores, Natural Enemies and Pollinators across 21 Brassicaceae Species

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Large plants are often more conspicuous and more attractive for associated animals than small plants, e.g. due to their wider range of resources. Therefore, plant size can positively affect species richness of associated animals, as shown for single groups of herbivores, but studies usually consider intraspecific size differences of plants in unstandardised environments. As comprehensive tests of interspecific plant size differences under standardised conditions are missing so far, we investigated effects of plant size on species richness of all associated arthropods using a common garden experiment with 21 Brassicaceae species covering a broad interspecific plant size gradient from 10 to 130 cm height. We recorded plant associated ecto- and endophagous herbivores, their natural enemies and pollinators on and in each aboveground plant organ, i.e. flowers, fruits, leaves and stems. Plant size (measured as height from the ground), the number of different plant organ entities and their biomass were assessed. Increasing plant size led to increased species richness of associated herbivores, natural enemies and pollinating insects. This pattern was found for ectophagous and endophagous herbivores, their natural enemies, as well as for herbivores associated with leaves and fruits and their natural enemies, independently of the additional positive effects of resource availability (i.e. organ biomass or number of entities and, regarding natural enemies, herbivore species richness). We found a lower R 2 for pollinators compared to herbivores and natural enemies, probably caused by the high importance of flower characteristics for pollinator species richness besides plant size. Overall, the increase in plant height from 10 to 130 cm led to a 2.7-fold increase in predicted total arthropod species richness. In conclusion, plant size is a comprehensive driver of species richness of the plant associated arthropods, including pollinators, herbivores and their natural enemies, whether they are endophagous or ectophagous or associated with leaves or fruits.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: found
          • Article: not found

          The evolution of body size: what keeps organisms small?

          It is widely agreed that fecundity selection and sexual selection are the major evolutionary forces that select for larger body size in most organisms. The general, equilibrium view is that selection for large body size is eventually counterbalanced by opposing selective forces. While the evidence for selection favoring larger body size is overwhelming, counterbalancing selection favoring small body size is often masked by the good condition of the larger organism and is therefore less obvious. The suggested costs of large size are: (1) viability costs in juveniles due to long development and/or fast growth; (2) viability costs in adults and juveniles due to predation, parasitism, or starvation because of reduced agility, increased detectability, higher energy requirements, heat stress, and/or intrinsic costs of reproduction; (3) decreased mating success of large males due to reduced agility and/or high energy requirements; and (4) decreased reproductive success of large females and males due to late reproduction. A review of the literature indicates a substantial lack of empirical evidence for these various mechanisms and highlights the need for experimental studies that specifically address the fitness costs of being large at the ecological, physiological, and genetic levels. Specifically, theoretical investigations and comprehensive case studies of particular model species are needed to elucidate whether sporadic selection in time and space is sufficient to counterbalance perpetual and strong selection for large body size.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Insect host location: a volatile situation.

            Locating a host plant is crucial for a phytophagous (herbivorous) insect to fulfill its nutritional requirements and to find suitable oviposition sites. Insects can locate their hosts even though the host plants are often hidden among an array of other plants. Plant volatiles play an important role in this host-location process. The recognition of a host plant by these olfactory signals could occur by using either species-specific compounds or specific ratios of ubiquitous compounds. Currently, most studies favor the second scenario, with strong evidence that plant discrimination is due to central processing of olfactory signals by the insect, rather than their initial detection. Furthermore, paired or clustered olfactory receptor neurons might enable fine-scale spatio-temporal resolution of the complex signals encountered when ubiquitous compounds are used.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The specificity of herbivore-induced plant volatiles in attracting herbivore enemies.

              Plants respond to herbivore attack by emitting complex mixtures of volatile compounds that attract herbivore enemies, both predators and parasitoids. Here, we explore whether these mixtures provide significant value as information cues in herbivore enemy attraction. Our survey indicates that blends of volatiles released from damaged plants are frequently specific depending on the type of herbivore and its age, abundance and feeding guild. The sensory perception of plant volatiles by herbivore enemies is also specific, according to the latest evidence from studies of insect olfaction. Thus, enemies do exploit the detailed information provided by plant volatile mixtures in searching for their prey or hosts, but this varies with the diet breadth of the enemy. Copyright © 2012 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                20 August 2015
                2015
                : 10
                : 8
                : e0135928
                Affiliations
                [1 ]Agroecology, Georg-August-University Göttingen, Göttingen, Germany
                [2 ]Centre for Environmental and Climate Research, Lund, Sweden
                [3 ]Hungarian Department of Biology and Ecology, Babes-Bolyai University, Cluj-Napoca, Romania
                [4 ]Institute of Horticultural Production Systems, Department Phytomedicine, Leibniz University Hannover, Hannover, Germany
                UMR INRA/INSA, BF2I, FRANCE
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: HS CW TT. Performed the experiments: HS ZL ML. Analyzed the data: HS YC. Contributed reagents/materials/analysis tools: HS CW YC ZL ML TT. Wrote the paper: HS CW YC ZL ML TT.

                Article
                PONE-D-15-05020
                10.1371/journal.pone.0135928
                4546192
                26291614
                a0adb86e-cb1d-4e74-a7e3-f1bbc61c342c
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 3 February 2015
                : 28 July 2015
                Page count
                Figures: 5, Tables: 5, Pages: 18
                Funding
                H.S. was supported by the State of Lower Saxony (Ministry of Science and Culture) in the frame of the Cluster of Excellence “Functional Biodiversity Research”. The publication was funded by the University of Göttingen in the funding program Open Access Publishing. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article