15
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Relación inter específica de Aedes albopictus (Diptera:Culicidae) con especies de culícidos en La Habana, Cuba Translated title: Interspecific relationship between Aedes albopictus (Diptera: Culicidae) and Culicidae species in Havana, Cuba

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references87

          • Record: found
          • Abstract: found
          • Article: not found

          Critical review of the vector status of Aedes albopictus.

          N G Gratz (2004)
          The mosquito Aedes (Stegomyia) albopictus (Skuse) (Diptera: Culicidae), originally indigenous to South-east Asia, islands of the Western Pacific and Indian Ocean, has spread during recent decades to Africa, the mid-east, Europe and the Americas (north and south) after extending its range eastwards across Pacific islands during the early 20th century. The majority of introductions are apparently due to transportation of dormant eggs in tyres. Among public health authorities in the newly infested countries and those threatened with the introduction, there has been much concern that Ae. albopictus would lead to serious outbreaks of arbovirus diseases (Ae. albopictus is a competent vector for at least 22 arboviruses), notably dengue (all four serotypes) more commonly transmitted by Aedes (Stegomyia) aegypti (L.). Results of many laboratory studies have shown that many arboviruses are readily transmitted by Ae. albopictus to laboratory animals and birds, and have frequently been isolated from wild-caught mosquitoes of this species, particularly in the Americas. As Ae. albopictus continues to spread, displacing Ae. aegypti in some areas, and is anthropophilic throughout its range, it is important to review the literature and attempt to predict whether the medical risks are as great as have been expressed in scientific journals and the popular press. Examination of the extensive literature indicates that Ae. albopictus probably serves as a maintenance vector of dengue in rural areas of dengue-endemic countries of South-east Asia and Pacific islands. Also Ae. albopictus transmits dog heartworm Dirofilaria immitis (Leidy) (Spirurida: Onchocercidae) in South-east Asia, south-eastern U.S.A. and both D. immitis and Dirofilaria repens (Raillet & Henry) in Italy. Despite the frequent isolation of dengue viruses from wild-caught mosquitoes, there is no evidence that Ae. albopictus is an important urban vector of dengue, except in a limited number of countries where Ae. aegypti is absent, i.e. parts of China, the Seychelles, historically in Japan and most recently in Hawaii. Further research is needed on the dynamics of the interaction between Ae. albopictus and other Stegomyia species. Surveillance must also be maintained on the vectorial role of Ae. albopictus in countries endemic for dengue and other arboviruses (e.g. Chikungunya, EEE, Ross River, WNV, LaCrosse and other California group viruses), for which it would be competent and ecologically suited to serve as a bridge vector.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Invasions by insect vectors of human disease.

            Nonindigenous vectors that arrive, establish, and spread in new areas have fomented throughout recorded history epidemics of human diseases such as malaria, yellow fever, typhus, and plague. Although some vagile vectors, such as adults of black flies, biting midges, and tsetse flies, have dispersed into new habitats by flight or wind, human-aided transport is responsible for the arrival and spread of most invasive vectors, such as anthropophilic fleas, lice, kissing bugs, and mosquitoes. From the fifteenth century to the present, successive waves of invasion of the vector mosquitoes Aedes aegypti, the Culex pipiens Complex, and, most recently, Aedes albopictus have been facilitated by worldwide ship transport. Aircraft have been comparatively unimportant for the transport of mosquito invaders. Mosquito species that occupy transportable container habitats, such as water-holding automobile tires, have been especially successful as recent invaders. Propagule pressure, previous success, and adaptations to human habits appear to favor successful invasions by vectors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Desiccation and thermal tolerance of eggs and the coexistence of competing mosquitoes.

              We tested the hypothesis that differences in temperature and desiccation tolerances of eggs of the container-dwelling mosquitoes Aedes albopictus and Aedes aegypti influence whether invading A. albopictus coexist with or exclude A. aegypti in Florida. In the laboratory, egg mortality through 30 days for A. albopictus was strongly temperature and humidity dependent, with low humidity and high temperature producing greatest mortality. In contrast, mortality through 30 days and through 60 days for A. aegypti was very low and independent of temperature and humidity. Mortality through 90 days for A. aegypti showed significant effects of both temperature and humidity. In the field, the proportion of vases occupied by A. albopictus was significantly lower at four of six sites at the start of the wet season (after a dry period) versus well into the wet season (after containers had held water for weeks). The proportion of vases occupied by A. aegypti was independent of when during the wet season vases were sampled. These results imply that dry periods cause disproportionately greater mortality of A. albopictus eggs compared to A. aegypti eggs. Container occupancy at tire and cemetery sites was significantly related to two principal components derived from longterm average climate data. Occupancy of containers by A. albopictus was greatest at cool sites with little or no dry season, and decreased significantly with increasing mean temperature and increasing number of dry months. In contrast, occupancy of containers by A. aegypti was lowest at cool sites with little or no dry season, and increased significantly with increasing mean temperature and increasing dry season length, and decreased significantly with total precipitation and number of wet months. We suggest that local coexistence of these species is possible because warm, dry climates favor A. aegypti and alleviate effects of competition from A. albopictus via differential mortality of A. albopictus eggs.
                Bookmark

                Author and article information

                Contributors
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Journal
                mtr
                Revista Cubana de Medicina Tropical
                Rev Cubana Med Trop
                Centro Nacional de Información de Ciencias Médicas (Ciudad de la Habana )
                1561-3054
                August 2015
                : 67
                : 2
                : 0
                Affiliations
                [1 ] Instituto Medicina Tropical Pedro Kourí Cuba
                [2 ] Unidad de Vectores Cuba
                Article
                S0375-07602015000200013
                a0ae7136-bffe-4c3e-a21b-84c034afc27b

                http://creativecommons.org/licenses/by/4.0/

                History
                Product

                SciELO Cuba

                Self URI (journal page): http://scielo.sld.cu/scielo.php?script=sci_serial&pid=0375-0760&lng=en
                Categories
                TROPICAL MEDICINE

                Infectious disease & Microbiology
                Aedes albopictus,interspecific relation,coexistence,dispersion,Cuba,relación ínter especifica,coexistencia,dispersión

                Comments

                Comment on this article