1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of anesthetic agents on contractions of the pregnant rat myometrium in vivo and in vitro

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Several anesthetic agents are used in cesarean sections for both regional and general anesthesia purposes. However, there are no data comparing the in vivo effects of propofol, sevoflurane, and dexmedetomidine on the contraction of the myometrium in pregnant rats. The aim of this study was to investigate the effect of these anesthetic agents on myometrial contraction and elucidate the underlying mechanisms.

          Methods

          Contraction force and frequency changes in response to propofol, dexmedetomidine, or sevoflurane were evaluated in vivo and in vitro. To test the effect of arachidonic acid on myometrial contraction enhanced by dexmedetomidine, changes in myometrial contraction with dexmedetomidine after administration of indomethacin were evaluated. The amount of phosphorylated myosin phosphatase target subunit 1 (MYPT1) in the membrane fraction was expressed as a percentage of the total fraction by Western blot analysis.

          Results

          This study demonstrated that dexmedetomidine enhances oxytocin-induced contraction in the myometrium of pregnant rats, whereas propofol and sevoflurane attenuate these contractions. The dexmedetomidine-induced enhancement of myometrial contraction force was abolished by the administration of indomethacin. Propofol did not affect oxytocin-induced MYPT1 phosphorylation, whereas sevoflurane attenuated oxytocin-induced MYPT1 phosphorylation.

          Conclusions

          Inhibition of myofilament calcium sensitivity may underlie the inhibition of myometrial contraction induced by sevoflurane. Arachidonic acid may play an important role in the enhancement of myometrial contraction induced by dexmedetomidine by increasing myofilament calcium sensitivity. Dexmedetomidine may be used as a sedative agent to promote uterine muscle contraction and suppress bleeding after fetal delivery.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          The effects of increasing plasma concentrations of dexmedetomidine in humans.

          This study determined the responses to increasing plasma concentrations of dexmedetomidine in humans. Ten healthy men (20-27 yr) provided informed consent and were monitored (underwent electrocardiography, measured arterial, central venous [CVP] and pulmonary artery [PAP] pressures, cardiac output, oxygen saturation, end-tidal carbon dioxide [ETCO2], respiration, blood gas, and catecholamines). Hemodynamic measurements, blood sampling, and psychometric, cold pressor, and baroreflex tests were performed at rest and during sequential 40-min intravenous target infusions of dexmedetomidine (0.5, 0.8, 1.2, 2.0, 3.2, 5.0, and 8.0 ng/ml; baroreflex testing only at 0.5 and 0.8 ng/ml). The initial dose of dexmedetomidine decreased catecholamines 45-76% and eliminated the norepinephrine increase that was seen during the cold pressor test. Catecholamine suppression persisted in subsequent infusions. The first two doses of dexmedetomidine increased sedation 38 and 65%, and lowered mean arterial pressure by 13%, but did not change central venous pressure or pulmonary artery pressure. Subsequent higher doses increased sedation, all pressures, and calculated vascular resistance, and resulted in significant decreases in heart rate, cardiac output, and stroke volume. Recall and recognition decreased at a dose of more than 0.7 ng/ml. The pain rating and mean arterial pressure increase to cold pressor test progressively diminished as the dexmedetomidine dose increased. The baroreflex heart rate slowing as a result of phenylephrine challenge was potentiated at both doses of dexmedetomidine. Respiratory variables were minimally changed during infusions, whereas acid-base was unchanged. Increasing concentrations of dexmedetomidine in humans resulted in progressive increases in sedation and analgesia, decreases in heart rate, cardiac output, and memory. A biphasic (low, then high) dose-response relation for mean arterial pressure, pulmonary arterial pressure, and vascular resistances, and an attenuation of the cold pressor response also were observed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effect of three types of mixed anesthetic agents alternate to ketamine in mice.

            Ketamine is usually used for murine anesthesia in animal experiments with other anesthetics for its sedation and analgesic effects. However, ketamine was categorized as a narcotic drug in Japan on January 1, 2007. After this act came into effect, a narcotic handling license became necessary for using and possessing ketamine. Pentobarbital sodium, which is also used for laboratory animal experiments as Nembutal, is no longer being manufactured. For these reasons, other anesthetic agents that can be used without a license are needed. In this paper, we examined the use of anesthetics other than ketamine and pentobarbital sodium. A combination anesthetic (M/M/B: 0.3/4/5) was prepared with 0.3 mg/kg of medetomidine, 4.0 mg/kg of midazolam, and 5.0 mg/kg of butorphanol. The anesthetics were administered to male ICR mice by intraperitoneal injection. In order to assess anesthetic depth and duration, we stimulated the mice directly after loss of righting reflexes to recovery of these same reflexes and then recorded four parameters--a tail pinch reflex, a pedal withdrawal reflex in the forelimbs, a pedal withdrawal reflex in the hindlimbs, and corneal reflex. Each parameter was scored, and the anesthetic depth, expressed by the total score, was summed. The surgical anesthesia duration of M/M/B: 0.3/4/5 mg/kg was almost identical to the surgical anesthetic duration with a ketamine and xylazine mixture (80-8 mg/kg). These data suggested that mice can be anesthetized by M/M/B: 0.3/4/5 as an alternate to ketamine. We thus can recommend M/M/B: 0.3/4/5 for murine surgical anesthesia.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Propofol. An update on its clinical use.

                Bookmark

                Author and article information

                Contributors
                m.kimizuka@sapmed.ac.jp
                Journal
                J Anesth
                J Anesth
                Journal of Anesthesia
                Springer Singapore (Singapore )
                0913-8668
                1438-8359
                24 October 2020
                24 October 2020
                2021
                : 35
                : 1
                : 68-80
                Affiliations
                GRID grid.263171.0, ISNI 0000 0001 0691 0855, Department of Anesthesiology, , Sapporo Medical University School of Medicine, ; 291, South 1, West 16, Chuo-ku, Sapporo, Hokkaido 060-8543 Japan
                Author information
                http://orcid.org/0000-0002-7613-9979
                Article
                2866
                10.1007/s00540-020-02866-9
                7840642
                33098452
                a0ba0024-7ae6-423d-b6ae-b18a68a432bd
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 23 May 2020
                : 8 October 2020
                Categories
                Original Article
                Custom metadata
                © Japanese Society of Anesthesiologists 2021

                Anesthesiology & Pain management
                myometrial contraction,dexmedetomidine,pregnant rat
                Anesthesiology & Pain management
                myometrial contraction, dexmedetomidine, pregnant rat

                Comments

                Comment on this article