32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Activation of type I cyclic AMP-dependent protein kinases with defective cyclic AMP-binding sites.

      The Journal of Biological Chemistry
      Amino Acid Sequence, Animals, Binding Sites, Cyclic AMP, analogs & derivatives, metabolism, Enzyme Activation, Lymphoma, enzymology, Mathematics, Mice, Mutation, Protein Kinases, genetics

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Two S49 mouse lymphoma cell variants hemizygous for expression of mutant regulatory (R) subunits of type I cyclic AMP-dependent protein kinase were used to investigate functional consequences of lesions in the putative cAMP-binding sites of R subunit. Kinase activation properties of wild-type and mutant enzymes were compared using cAMP and six site-selective analogs of cAMP. Kinases from both mutant sublines were relatively resistant to cyclic nucleotide-dependent activation, but they were fully activable by at least some effectors. Relative resistances of the mutant kinases varied from about 5-fold for analogs selective for their nonmutated sites to as much as 700-fold for analogs selective for their mutated sites; resistance to cAMP was intermediate. Apparent affinities of wild-type and mutant R subunits for [3H]cAMP were not appreciably different, but competition experiments with site-selective analogs of cAMP suggested that binding of cAMP to mutant R subunits was primarily to their nonmutated sites. Analyses of cooperativity in cyclic nucleotide-dependent activation of mutant kinases, synergism between site I- and site II-selective analogs in activating the mutant enzymes, and dissociation of bound cAMP from mutant R subunits provided additional evidence that the mutations in these strains selectively inactivated single classes of cAMP-binding sites: phenomena attributable in wild-type enzyme to intrachain interactions between sites I and II were always absent or severely diminished in experiments with the mutant enzymes. These results confirm that R subunit sequences implicated in cAMP binding by homology with other cyclic nucleotide-binding proteins actually correspond to functional cAMP-binding sites. Furthermore, occupation of either cAMP-binding site I or II is apparently sufficient for activation of cAMP-dependent protein kinase. The presence of four functional cAMP-binding sites in wild-type kinase enhances the cooperativity and sensitivity of cAMP-mediated activation.

          Related collections

          Author and article information

          Comments

          Comment on this article