17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MiR-205 inhibits cell apoptosis by targeting phosphatase and tensin homolog deleted on chromosome ten in endometrial cancer ishikawa cells

      research-article
      1 , , 1 , 2 , 3
      BMC Cancer
      BioMed Central
      Endometrial cancer, microRNA, PTEN, AKT pathway

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          MicroRNAs (miRNAs) are frequently dysregulated in human cancers and can act as either potent oncogenes or tumor suppressor genes. In the present study, we intend to prove that the gene PTEN (phosphatase and tensin homolog deleted on chromosome ten) is a target gene of miR-205 and to investigate the suppressive effects on PTEN transcriptional activity by enhancing miR-205 expression in endometrial cancer Ishikawa cells.

          Methods

          Using Ishikawa cells as model systems, we up-regulated miR-205 expression by transient transfection with miR-205 mimics. A luciferase reporter assay, qRT-PCR and western blotting assays were used to verify whether PTEN is a direct target of miR-205. Meanwhile, the modulatory role of miR-205 in the AKT (protein kinase B) pathway was evaluated by determining the AKT phosphorylation. As a biological counterpart, we investigated cell apoptosis using flow cytometry.

          Results

          Our data indicate that miR-205 down-regulates the expression of PTEN through direct interaction with the putative binding site in the 3′-untranslated region (3′-UTR) of PTEN. Moreover, we documented the functional interactions of miR-205 and PTEN, which have a downstream effect on the regulation of the AKT pathway, explaining, at least in part, the inhibitory effects on Ishikawa cell apoptosis of enhancing miR-205 expression.

          Conclusions

          For the first time, we demonstrate that the expression of PTEN is directly regulated by miR-205 in endometrial cancer cells and leads the inhibition of cellular apoptosis. This relationship could be targeted for new therapeutic strategies for endometrial cancer.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          MicroRNA Targets in Drosophila

          Additional data files Additional data file 1, 2, 3 and 4. Supplementary Material Additional data file 1 Additional data file 1 Click here for additional data file Additional data file 2 Additional data file 2 Click here for additional data file Additional data file 3 Additional data file 3 Click here for additional data file Additional data file 4 Additional data file 4 Click here for additional data file
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Altered MicroRNA expression confined to specific epithelial cell subpopulations in breast cancer.

            MicroRNAs (miRNAs) are a new class of short noncoding regulatory RNAs (18-25 nucleotides) that are involved in diverse developmental and pathologic processes. Altered miRNA expression has been associated with several types of human cancer. However, most studies did not establish whether miRNA expression changes occurred within cells undergoing malignant transformation. To obtain insight into miRNA deregulation in breast cancer, we implemented an in situ hybridization (ISH) method to reveal the spatial distribution of miRNA expression in archived formalin-fixed, paraffin-embedded specimens representing normal and tumor tissue from >100 patient cases. Here, we report that expression of miR-145 and miR-205 was restricted to the myoepithelial/basal cell compartment of normal mammary ducts and lobules, whereas their accumulation was reduced or completely eliminated in matching tumor specimens. Conversely, expression of other miRNAs was detected at varying levels predominantly within luminal epithelial cells in normal tissue; expression of miR-21 was frequently increased, whereas that of let-7a was decreased in malignant cells. We also analyzed the association of miRNA expression with that of epithelial markers; prognostic indicators such as estrogen receptor, progesterone receptor, and HER2; as well as clinical outcome data. This ISH approach provides a more direct and informative assessment of how altered miRNA expression contributes to breast carcinogenesis compared with miRNA expression profiling in gross tissue biopsies. Most significantly, early manifestation of altered miR-145 expression in atypical hyperplasia and carcinoma in situ lesions suggests that this miRNA may have a potential clinical application as a novel biomarker for early detection.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Akt/protein kinase B up-regulates Bcl-2 expression through cAMP-response element-binding protein.

              In our previous study we showed that insulin-like growth factor-I induces a cAMP-response element (CRE) site-containing Bcl-2 promoter through a novel signaling pathway involving mitogen-activated protein kinase kinase 6/p38beta mitogen-activated protein kinase/MAP kinase-activated protein kinase-3/cAMP-response element-binding protein (CREB) (Pugazhenthi, S., Miller, E., Sable, C., Young, P., Heidenreich, K. A., Boxer, L. M., and Reusch, J. E.-B. (1999) J. Biol. Chem. 274, 27529-27535). In the present investigation, we define a second pathway contributing to CREB-dependent up-regulation of Bcl-2 expression as a novel anti-apoptotic function of Akt signaling. To examine the role of Akt on Bcl-2 expression, a series of transient transfections using a luciferase reporter gene driven by the promoter region of Bcl-2 containing a CRE were carried out. Pharmacological inhibition of phosphatidylinositol (PI) 3-kinase, the upstream kinase of Akt, with LY294002 led to a 45% decrease in Bcl-2 promoter activity. The reporter activity was enhanced 2.3-fold by overexpression of active p110 subunit of PI 3-kinase and inhibited 44% by the dominant negative p85 subunit of PI 3-kinase. Cotransfection with 3-phosphoinositide-dependent kinase (PDK1), which is required for the full activation of Akt, resulted in enhanced luciferase activity. Insulin-like growth factor-I-mediated induction of Bcl-2 promoter activity was decreased significantly (p < 0.01) by the dominant negative forms of p85 subunit of PI 3-kinase, PDK1, and Akt. These data indicate that regulation of Bcl-2 expression by IGF-I involves a signaling cascade mediated by PI 3-kinase/PDK1/Akt/CREB. Furthermore, we measured the Bcl-2 mRNA in PC12 cells overexpressing Akt by real-time quantitative reverse transcription-polymerase chain reaction using the TaqMan(TM) fluorogenic probe system. We observed a 2.1-fold increase in Bcl-2 mRNA levels in the Akt cell line compared with control PC12 cells, supporting the observation that enhanced CREB activity by Akt signaling leads to increased Bcl-2 promoter activity and cell survival.
                Bookmark

                Author and article information

                Contributors
                Journal
                BMC Cancer
                BMC Cancer
                BMC Cancer
                BioMed Central
                1471-2407
                2014
                14 June 2014
                : 14
                : 440
                Affiliations
                [1 ]Department of Gynecology, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan 250012, P.R. China
                [2 ]Department of Gynecology, Weihai Municipal Hospital, 70 Heping Road, Weihai 264200, P.R. China
                [3 ]Department of Gynecology, Zibo Maternal and Child Health Hospital, 11 Xingyuandong Road, Zhangdian District, Zibo 255000, P.R. China
                Article
                1471-2407-14-440
                10.1186/1471-2407-14-440
                4073515
                24929707
                a0c17adb-fc6c-4ca3-a374-44c149b00fb3
                Copyright © 2014 Zhang et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 16 April 2014
                : 9 June 2014
                Categories
                Research Article

                Oncology & Radiotherapy
                endometrial cancer,microrna,pten,akt pathway
                Oncology & Radiotherapy
                endometrial cancer, microrna, pten, akt pathway

                Comments

                Comment on this article