18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Development of Tumor-Targeted Indocyanine Green-Loaded Ferritin Nanoparticles for Intraoperative Detection of Cancers

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Indocyanine green (ICG) is a fluorescent dye with a strong emission in the near-infrared spectral range that allows deep signal penetration and minimal interference of tissue autofluorescence. It has been employed in clinics for different applications, among which the more interesting is certainly near-infrared fluorescence image-guided surgery. This technique has found wide application in surgical oncology for lymph node mapping or for laparoscopic surgery. Despite ICG being useful for tracking loco-regional lymph nodes, it does not provide any information about cancer involvement of such lymph nodes or lymphatic vessels, lacking any tumor-targeting specificity. However, the clinical need in surgical oncology is not only a specific tracking of metastatic nodes but also the intraoperative detection of micrometastatic deposits. Here, we have exploited a nanotechnological solution to improve ICG usefulness by its encapsulation in H-ferritin (HFn) nanocages. They are natural protein-based nanoparticles that exhibit some very interesting features as delivery systems in oncological applications because they display specific tumor homing. We show that HFn loaded with ICG exhibits specific uptake into different cancer cell lines and is able to deliver ICG to the tumor more efficiently than the free dye in an in vivo model of TNBC. Our results pave the way for the application of ICG-loaded HFn in fluorescence image-guided surgery of cancer.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Magnetoferritin nanoparticles for targeting and visualizing tumour tissues.

          Engineered nanoparticles have been used to provide diagnostic, therapeutic and prognostic information about the status of disease. Nanoparticles developed for these purposes are typically modified with targeting ligands (such as antibodies, peptides or small molecules) or contrast agents using complicated processes and expensive reagents. Moreover, this approach can lead to an excess of ligands on the nanoparticle surface, and this causes non-specific binding and aggregation of nanoparticles, which decreases detection sensitivity. Here, we show that magnetoferritin nanoparticles (M-HFn) can be used to target and visualize tumour tissues without the use of any targeting ligands or contrast agents. Iron oxide nanoparticles are encapsulated inside a recombinant human heavy-chain ferritin (HFn) protein shell, which binds to tumour cells that overexpress transferrin receptor 1 (TfR1). The iron oxide core catalyses the oxidation of peroxidase substrates in the presence of hydrogen peroxide to produce a colour reaction that is used to visualize tumour tissues. We examined 474 clinical specimens from patients with nine types of cancer and verified that these nanoparticles can distinguish cancerous cells from normal cells with a sensitivity of 98% and specificity of 95%.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The intracellular trafficking pathway of transferrin.

            Transferrin (Tf) is an iron-binding protein that facilitates iron-uptake in cells. Iron-loaded Tf first binds to the Tf receptor (TfR) and enters the cell through clathrin-mediated endocytosis. Inside the cell, Tf is trafficked to early endosomes, delivers iron, and then is subsequently directed to recycling endosomes to be taken back to the cell surface. We aim to review the various methods and techniques that researchers have employed for elucidating the Tf trafficking pathway and the cell-machinery components involved. These experimental methods can be categorized as microscopy, radioactivity, and surface plasmon resonance (SPR). Qualitative experiments, such as total internal reflectance fluorescence (TIRF), electron, laser-scanning confocal, and spinning-disk confocal microscopy, have been utilized to determine the roles of key components in the Tf trafficking pathway. These techniques allow temporal resolution and are useful for imaging Tf endocytosis and recycling, which occur on the order of seconds to minutes. Additionally, radiolabeling and SPR methods, when combined with mathematical modeling, have enabled researchers to estimate quantitative kinetic parameters and equilibrium constants associated with Tf binding and trafficking. Both qualitative and quantitative data can be used to analyze the Tf trafficking pathway. The valuable information that is obtained about the Tf trafficking pathway can then be combined with mathematical models to identify design criteria to improve the ability of Tf to deliver anticancer drugs. This article is part of a Special Issue entitled Transferrins: Molecular mechanisms of iron transport and disorders. Copyright © 2011 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Binding and uptake of H-ferritin are mediated by human transferrin receptor-1.

              Ferritin is a spherical molecule composed of 24 subunits of two types, ferritin H chain (FHC) and ferritin L chain (FLC). Ferritin stores iron within cells, but it also circulates and binds specifically and saturably to a variety of cell types. For most cell types, this binding can be mediated by ferritin composed only of FHC (HFt) but not by ferritin composed only of FLC (LFt), indicating that binding of ferritin to cells is mediated by FHC but not FLC. By using expression cloning, we identified human transferrin receptor-1 (TfR1) as an important receptor for HFt with little or no binding to LFt. In vitro, HFt can be precipitated by soluble TfR1, showing that this interaction is not dependent on other proteins. Binding of HFt to TfR1 is partially inhibited by diferric transferrin, but it is hindered little, if at all, by HFE. After binding of HFt to TfR1 on the cell surface, HFt enters both endosomes and lysosomes. TfR1 accounts for most, if not all, of the binding of HFt to mitogen-activated T and B cells, circulating reticulocytes, and all cell lines that we have studied. The demonstration that TfR1 can bind HFt as well as Tf raises the possibility that this dual receptor function may coordinate the processing and use of iron by these iron-binding molecules.
                Bookmark

                Author and article information

                Journal
                ACS Omega
                ACS Omega
                ao
                acsodf
                ACS Omega
                American Chemical Society
                2470-1343
                20 May 2020
                02 June 2020
                : 5
                : 21
                : 12035-12045
                Affiliations
                []Nanomedicine Laboratory, Department of Biomedical and Clinical Sciences “Luigi Sacco”, Università degli Studi di Milano , via G.B. Grassi 74, 20157 Milan, Italy
                []Nanomedicine and Molecular Imaging Lab, Istituti Clinici Scientifici Maugeri IRCCS , via S. Maugeri, 10, 27100 Pavia (PV), Italy
                [§ ]General Surgery Division, Department of Biomedical and Clinical Sciences “Luigi Sacco”, Università degli Studi di Milano , via G.B. Grassi 74, 20157 Milan, Italy
                []Breast Unit, Istituti Clinici Scientifici Maugeri IRCCS , via S. Maugeri, 10, 27100 Pavia (PV), Italy
                Author notes
                Article
                10.1021/acsomega.0c00244
                7271044
                32548382
                a0c21275-43aa-414a-a16b-fb9ef03331dd
                Copyright © 2020 American Chemical Society

                This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.

                History
                : 17 January 2020
                : 29 April 2020
                Categories
                Article
                Custom metadata
                ao0c00244
                ao0c00244

                Comments

                Comment on this article