29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Signal-dependent splicing of tissue factor pre-mRNA modulates the thrombogenecity of human platelets

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tissue factor (TF) is an essential cofactor for the activation of blood coagulation in vivo. We now report that quiescent human platelets express TF pre-mRNA and, in response to activation, splice this intronic-rich message into mature mRNA. Splicing of TF pre-mRNA is associated with increased TF protein expression, procoagulant activity, and accelerated formation of clots. Pre-mRNA splicing is controlled by Cdc2-like kinase (Clk)1, and interruption of Clk1 signaling prevents TF from accumulating in activated platelets. Elevated intravascular TF has been reported in a variety of prothrombotic diseases, but there is debate as to whether anucleate platelets—the key cellular effector of thrombosis—express TF. Our studies demonstrate that human platelets use Clk1-dependent splicing pathways to generate TF protein in response to cellular activation. We propose that platelet-derived TF contributes to the propagation and stabilization of a thrombus.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Escaping the nuclear confines: signal-dependent pre-mRNA splicing in anucleate platelets.

          Platelets are specialized hemostatic cells that circulate in the blood as anucleate cytoplasts. We report that platelets unexpectedly possess a functional spliceosome, a complex that processes pre-mRNAs in the nuclei of other cell types. Spliceosome components are present in the cytoplasm of human megakaryocytes and in proplatelets that extend from megakaryocytes. Primary human platelets also contain essential spliceosome factors including small nuclear RNAs, splicing proteins, and endogenous pre-mRNAs. In response to integrin engagement and surface receptor activation, platelets precisely excise introns from interleukin-1beta pre-mRNA, yielding a mature message that is translated into protein. Signal-dependent splicing is a novel function of platelets that demonstrates remarkable specialization in the regulatory repertoire of this anucleate cell. While this mechanism may be unique to platelets, it also suggests previously unrecognized diversity regarding the functional roles of the spliceosome in eukaryotic cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Role of tissue factor in hemostasis, thrombosis, and vascular development.

            Tissue factor (TF) is best known as the primary cellular initiator of blood coagulation. After vessel injury, the TF:FVIIa complex activates the coagulation protease cascade, which leads to fibrin deposition and activation of platelets. TF deficiency causes embryonic lethality in the mouse and there have been no reports of TF deficiency in humans. These results indicate that TF is essential for life, most likely because of its central role in hemostasis. In addition, aberrant TF expression within the vasculature initiates life-threatening thrombosis in various diseases, such as sepsis, atherosclerosis, and cancer. Finally, recent studies have revealed a nonhemostatic role of TF in the generation of coagulation proteases and subsequent activation of protease activated receptors (PARs) on vascular cells. This TF-dependent signaling contributes to a variety of biological processes, including inflammation, angiogenesis, metastasis, and cell migration. This review focuses on the roles of TF in hemostasis, thrombosis, and vascular development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Accumulation of Tissue Factor into Developing Thrombi In Vivo Is Dependent upon Microparticle P-Selectin Glycoprotein Ligand 1 and Platelet P-Selectin

              Using a laser-induced endothelial injury model, we examined thrombus formation in the microcirculation of wild-type and genetically altered mice by real-time in vivo microscopy to analyze this complex physiologic process in a system that includes the vessel wall, the presence of flowing blood, and the absence of anticoagulants. We observe P-selectin expression, tissue factor accumulation, and fibrin generation after platelet localization in the developing thrombus in arterioles of wild-type mice. However, mice lacking P-selectin glycoprotein ligand 1 (PSGL-1) or P-selectin, or wild-type mice infused with blocking P-selectin antibodies, developed platelet thrombi containing minimal tissue factor and fibrin. To explore the delivery of tissue factor into a developing thrombus, we identified monocyte-derived microparticles in human platelet–poor plasma that express tissue factor, PSGL-1, and CD14. Fluorescently labeled mouse microparticles infused into a recipient mouse localized within the developing thrombus, indicating that one pathway for the initiation of blood coagulation in vivo involves the accumulation of tissue factor– and PSGL-1–containing microparticles in the platelet thrombus expressing P-selectin. These monocyte-derived microparticles bind to activated platelets in an interaction mediated by platelet P-selectin and microparticle PSGL-1. We propose that PSGL-1 plays a role in blood coagulation in addition to its known role in leukocyte trafficking.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                30 October 2006
                : 203
                : 11
                : 2433-2440
                Affiliations
                [1 ]Department of Internal Medicine, [2 ]Department of Surgery, and [3 ]The Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112
                [4 ]Department of Immunology and Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037
                [5 ]Department of Internal Medicine III, Martin-Luther-University-Halle-Wittenberg, 06097 Halle/Saale, Germany
                Author notes

                CORRESPONDENCE Andrew S. Weyrich: Andy.weyrich@ 123456hmbg.utah.edu

                Article
                20061302
                10.1084/jem.20061302
                2118136
                17060476
                a0c98440-857a-4016-9ead-bb20148de248
                Copyright © 2006, The Rockefeller University Press
                History
                : 19 June 2006
                : 29 September 2006
                Categories
                Brief Definitive Reports
                Brief Definitive Report

                Medicine
                Medicine

                Comments

                Comment on this article