8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Additive Manufacturing of Biopolymers for Tissue Engineering and Regenerative Medicine: An Overview, Potential Applications, Advancements, and Trends

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          As a technique of producing fabric engineering scaffolds, three-dimensional (3D) printing has tremendous possibilities. 3D printing applications are restricted to a wide range of biomaterials in the field of regenerative medicine and tissue engineering. Due to their biocompatibility, bioactiveness, and biodegradability, biopolymers such as collagen, alginate, silk fibroin, chitosan, alginate, cellulose, and starch are used in a variety of fields, including the food, biomedical, regeneration, agriculture, packaging, and pharmaceutical industries. The benefits of producing 3D-printed scaffolds are many, including the capacity to produce complicated geometries, porosity, and multicell coculture and to take growth factors into account. In particular, the additional production of biopolymers offers new options to produce 3D structures and materials with specialised patterns and properties. In the realm of tissue engineering and regenerative medicine (TERM), important progress has been accomplished; now, several state-of-the-art techniques are used to produce porous scaffolds for organ or tissue regeneration to be suited for tissue technology. Natural biopolymeric materials are often better suited for designing and manufacturing healing equipment than temporary implants and tissue regeneration materials owing to its appropriate properties and biocompatibility. The review focuses on the additive manufacturing of biopolymers with significant changes, advancements, trends, and developments in regenerative medicine and tissue engineering with potential applications.

          Related collections

          Most cited references196

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Nano based drug delivery systems: recent developments and future prospects

          Nanomedicine and nano delivery systems are a relatively new but rapidly developing science where materials in the nanoscale range are employed to serve as means of diagnostic tools or to deliver therapeutic agents to specific targeted sites in a controlled manner. Nanotechnology offers multiple benefits in treating chronic human diseases by site-specific, and target-oriented delivery of precise medicines. Recently, there are a number of outstanding applications of the nanomedicine (chemotherapeutic agents, biological agents, immunotherapeutic agents etc.) in the treatment of various diseases. The current review, presents an updated summary of recent advances in the field of nanomedicines and nano based drug delivery systems through comprehensive scrutiny of the discovery and application of nanomaterials in improving both the efficacy of novel and old drugs (e.g., natural products) and selective diagnosis through disease marker molecules. The opportunities and challenges of nanomedicines in drug delivery from synthetic/natural sources to their clinical applications are also discussed. In addition, we have included information regarding the trends and perspectives in nanomedicine area.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chitosan: a versatile biopolymer for orthopaedic tissue-engineering.

            Current tissue engineering strategies are focused on the restoration of pathologically altered tissue architecture by transplantation of cells in combination with supportive scaffolds and biomolecules. In recent years, considerable attention has been given to chitosan (CS)-based materials and their applications in the field of orthopedic tissue engineering. Interesting characteristics that render chitosan suitable for this purpose are a minimal foreign body reaction, an intrinsic antibacterial nature, and the ability to be molded in various geometries and forms such as porous structures, suitable for cell ingrowth and osteoconduction. Due to its favorable gelling properties chitosan can deliver morphogenic factors and pharmaceutical agents in a controlled fashion. Its cationic nature allows it to complex DNA molecules making it an ideal candidate for gene delivery strategies. The ability to manipulate and reconstitute tissue structure and function using this material has tremendous clinical implications and is likely to play a key role in cell and gene therapies in coming years. In this paper we will review the current applications and future directions of CS in articular cartilage, intervertebral disk and bone tissue engineering.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cell encapsulation in biodegradable hydrogels for tissue engineering applications.

              Encapsulating cells in biodegradable hydrogels offers numerous attractive features for tissue engineering, including ease of handling, a highly hydrated tissue-like environment for cell and tissue growth, and the ability to form in vivo. Many properties important to the design of a hydrogel scaffold, such as swelling, mechanical properties, degradation, and diffusion, are closely linked to the crosslinked structure of the hydrogel, which is controlled through a variety of different processing conditions. Degradation may be tuned by incorporating hydrolytically or enzymatically labile segments into the hydrogel or by using natural biopolymers that are susceptible to enzymatic degradation. Because cells are present during the gelation process, the number of suitable chemistries and formulations are limited. In this review, we describe important considerations for designing biodegradable hydrogels for cell encapsulation and highlight recent advances in material design and their applications in tissue engineering.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                International Journal of Polymer Science
                International Journal of Polymer Science
                Hindawi Limited
                1687-9430
                1687-9422
                September 8 2021
                September 8 2021
                : 2021
                : 1-20
                Affiliations
                [1 ]Centre for Additive Manufacturing and Computational Mechanics, Chennai Institute of Technology, Chennai, 600069 Tamil Nadu, India
                [2 ]Department of Mechanical Engineering, Ramco Institute of Technology, Rajapalayam, Virudhunagar, Tamil Nadu, India
                [3 ]Department of Mechanical Engineering, National Institute of Technology, Calicut, India
                [4 ]Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu 602105, India
                [5 ]Department of Mechanical Engineering, K. Ramakrishnan College of Engineering, Tiruchirappalli, 621 112 Tamil Nadu, India
                [6 ]Mechanical Engineering Department, Wollo University, Kombolcha Institute of Technology, Kombolcha, South Wollo-208, Amhara, Ethiopia
                Article
                10.1155/2021/4907027
                a0cd7d8e-6db9-4184-a828-3cde8e62deca
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article