37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Macrophages and Alcohol-Related Liver Inflammation

      research-article

      Read this article at

      ScienceOpenPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent studies have suggested that macrophages have a critical role in the development of alcohol-induced inflammation in the liver. To define the precise pathogenic function of these cells during alcoholic liver disease (ALD), it is extremely important to conduct extensive studies in clinical settings that further elucidate the phenotypic diversity of macrophages in the context of ALD. Research to date already has identified several characteristics of macrophages that underlie the cells’ actions, including macrophage polarization and their phenotypic diversity. Other analyses have focused on the contributions of resident versus infiltrating macrophages/monocytes, as well as on the roles of macrophage mediators, in the development of ALD. Findings point to the potential of macrophages as a therapeutic target in alcoholic liver injury. Future studies directed toward understanding how alcohol affects macrophage phenotypic switch in the liver and other tissues, whether the liver microenvironment determines macrophage function in ALD, and if targeting of macrophages alleviates alcoholic liver injury, will provide promising strategies to manage patients with alcoholic hepatitis.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          Of mice and not men: differences between mouse and human immunology.

          Mice are the experimental tool of choice for the majority of immunologists and the study of their immune responses has yielded tremendous insight into the workings of the human immune system. However, as 65 million years of evolution might suggest, there are significant differences. Here we outline known discrepancies in both innate and adaptive immunity, including: balance of leukocyte subsets, defensins, Toll receptors, inducible NO synthase, the NK inhibitory receptor families Ly49 and KIR, FcR, Ig subsets, the B cell (BLNK, Btk, and lambda5) and T cell (ZAP70 and common gamma-chain) signaling pathway components, Thy-1, gammadelta T cells, cytokines and cytokine receptors, Th1/Th2 differentiation, costimulatory molecule expression and function, Ag-presenting function of endothelial cells, and chemokine and chemokine receptor expression. We also provide examples, such as multiple sclerosis and delayed-type hypersensitivity, where complex multicomponent processes differ. Such differences should be taken into account when using mice as preclinical models of human disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation.

            A defining feature of inflammation is the accumulation of innate immune cells in the tissue that are thought to be recruited from the blood. We reveal that a distinct process exists in which tissue macrophages undergo rapid in situ proliferation in order to increase population density. This inflammatory mechanism occurred during T helper 2 (T(H)2)-related pathologies under the control of the archetypal T(H)2 cytokine interleukin-4 (IL-4) and was a fundamental component of T(H)2 inflammation because exogenous IL-4 was sufficient to drive accumulation of tissue macrophages through self-renewal. Thus, expansion of innate cells necessary for pathogen control or wound repair can occur without recruitment of potentially tissue-destructive inflammatory cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses.

              Polymorphisms in the gene encoding the transcription factor IRF5 that lead to higher mRNA expression are associated with many autoimmune diseases. Here we show that IRF5 expression in macrophages was reversibly induced by inflammatory stimuli and contributed to the plasticity of macrophage polarization. High expression of IRF5 was characteristic of M1 macrophages, in which it directly activated transcription of the genes encoding interleukin 12 subunit p40 (IL-12p40), IL-12p35 and IL-23p19 and repressed the gene encoding IL-10. Consequently, those macrophages set up the environment for a potent T helper type 1 (T(H)1)-T(H)17 response. Global gene expression analysis demonstrated that exogenous IRF5 upregulated or downregulated expression of established phenotypic markers of M1 or M2 macrophages, respectively. Our data suggest a critical role for IRF5 in M1 macrophage polarization and define a previously unknown function for IRF5 as a transcriptional repressor.
                Bookmark

                Author and article information

                Journal
                Alcohol Res
                Alcohol Res
                Alcohol Research : Current Reviews
                National Institute on Alcohol Abuse and Alcoholism
                2168-3492
                2169-4796
                2015
                : 37
                : 2
                : 251-262
                Affiliations
                Cynthia Ju, Ph.D., is a professor at the Skaggs School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, Colorado. Pranoti Mandrekar, Ph.D., is a professor in the Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts.
                Article
                arcr-37-2-251
                4590621
                26717583
                a0dfacc8-dd31-4b4e-a386-3399dae9a6fa
                Copyright @ 2015

                Unless otherwise noted in the text, all material appearing in this journal is in the public domain and may be reproduced without permission. Citation of the source is appreciated.

                History
                Categories
                Focus on

                alcohol consumption,alcoholic liver disease,alcoholic liver injury,alcoholic hepatitis,alcohol-related liver inflammation,liver,immunity,innate immune response,adaptive immune response,macrophage,macrophage phenotypic switch,kupffer cell

                Comments

                Comment on this article