35
views
0
recommends
+1 Recommend
2 collections
    0
    shares

          The flagship journal of the Society for Endocrinology. Learn more

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Epigenetic changes in fibroblasts drive cancer metabolism and differentiation

      review-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Genomic changes that drive cancer initiation and progression contribute to the co-evolution of the adjacent stroma. The nature of the stromal reprogramming involves differential DNA methylation patterns and levels that change in response to the tumor and systemic therapeutic intervention. Epigenetic reprogramming in carcinoma-associated fibroblasts are robust biomarkers for cancer progression and have a transcriptional impact that support cancer epithelial progression in a paracrine manner. For prostate cancer, promoter hypermethylation and silencing of the RasGAP, RASAL3 that resulted in the activation of Ras signaling in carcinoma-associated fibroblasts. Stromal Ras activity initiated a process of macropinocytosis that provided prostate cancer epithelia with abundant glutamine for metabolic conversion to fuel its proliferation and a signal to transdifferentiate into a neuroendocrine phenotype. This epigenetic oncogenic metabolic/signaling axis seemed to be further potentiated by androgen receptor signaling antagonists and contributed to therapeutic resistance. Intervention of stromal signaling may complement conventional therapies targeting the cancer cell.

          Related collections

          Most cited references131

          • Record: found
          • Abstract: found
          • Article: not found

          RAS Proteins and Their Regulators in Human Disease.

          RAS proteins are binary switches, cycling between ON and OFF states during signal transduction. These switches are normally tightly controlled, but in RAS-related diseases, such as cancer, RASopathies, and many psychiatric disorders, mutations in the RAS genes or their regulators render RAS proteins persistently active. The structural basis of the switch and many of the pathways that RAS controls are well known, but the precise mechanisms by which RAS proteins function are less clear. All RAS biology occurs in membranes: a precise understanding of RAS' interaction with membranes is essential to understand RAS action and to intervene in RAS-driven diseases.
            • Record: found
            • Abstract: found
            • Article: not found

            Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade.

            Blocking Programmed Death-1 (PD-1) can reinvigorate exhausted CD8 T cells (TEX) and improve control of chronic infections and cancer. However, whether blocking PD-1 can reprogram TEX into durable memory T cells (TMEM) is unclear. We found that reinvigoration of TEX in mice by PD-L1 blockade caused minimal memory development. After blockade, reinvigorated TEX became reexhausted if antigen concentration remained high and failed to become TMEM upon antigen clearance. TEX acquired an epigenetic profile distinct from that of effector T cells (TEFF) and TMEM cells that was minimally remodeled after PD-L1 blockade. This finding suggests that TEX are a distinct lineage of CD8 T cells. Nevertheless, PD-1 pathway blockade resulted in transcriptional rewiring and reengagement of effector circuitry in the TEX epigenetic landscape. These data indicate that epigenetic fate inflexibility may limit current immunotherapies.
              • Record: found
              • Abstract: found
              • Article: not found

              Ras in cancer and developmental diseases.

              Somatic, gain-of-function mutations in ras genes were the first specific genetic alterations identified in human cancer about 3 decades ago. Studies during the last quarter century have characterized the Ras proteins as essential components of signaling networks controlling cellular proliferation, differentiation, or survival. The oncogenic mutations of the H-ras, N-ras, or K-ras genes frequently found in human tumors are known to throw off balance the normal outcome of those signaling pathways, thus leading to tumor development. Oncogenic mutations in a number of other upstream or downstream components of Ras signaling pathways (including membrane RTKs or cytosolic kinases) have been detected more recently in association with a variety of cancers. Interestingly, the oncogenic Ras mutations and the mutations in other components of Ras/MAPK signaling pathways appear to be mutually exclusive events in most tumors, indicating that deregulation of Ras-dependent signaling is the essential requirement for tumorigenesis. In contrast to sporadic tumors, separate studies have identified germline mutations in Ras and various other components of Ras signaling pathways that occur in specific association with a number of different familial, developmental syndromes frequently sharing common phenotypic cardiofaciocutaneous features. Finally, even without being a causative force, defective Ras signaling has been cited as a contributing factor to many other human illnesses, including diabetes and immunological and inflammatory disorders. We aim this review at summarizing and updating current knowledge on the contribution of Ras mutations and altered Ras signaling to development of various tumoral and nontumoral pathologies.

                Author and article information

                Journal
                Endocr Relat Cancer
                Endocr. Relat. Cancer
                ERC
                Endocrine-Related Cancer
                Bioscientifica Ltd (Bristol )
                1351-0088
                1479-6821
                December 2019
                17 October 2019
                : 26
                : 12
                : R673-R688
                Affiliations
                [1 ]Department of Biosciences , Manipal University Jaipur, Jaipur, Rajasthan, India
                [2 ]Department of Biotechnology , Brainware University, Kolkata, India
                [3 ]Department of Medicine , Cedars-Sinai Medical Center, Los Angeles, California, USA
                [4 ]Department of Research , Greater Los Angeles Veterans Administration, Los Angeles, California, USA
                Author notes
                Correspondence should be addressed to N A Bhowmick: bhowmickn@ 123456cshs.org
                Article
                ERC-19-0347
                10.1530/ERC-19-0347
                6859444
                31627186
                a0f0fc6d-95bd-46a8-9d02-1e3f05752db0
                © 2019 The authors

                This work is licensed under a Creative Commons Attribution 4.0 International License.

                History
                : 09 October 2019
                : 17 October 2019
                Categories
                Review

                Oncology & Radiotherapy
                endocrine therapy resistance,prostate,neuroendocrine tumors
                Oncology & Radiotherapy
                endocrine therapy resistance, prostate, neuroendocrine tumors

                Comments

                Comment on this article

                Related Documents Log