191
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lensing Constraints on the Mass Profile Shape and the Splashback Radius of Galaxy Clusters

      ,
      The Astrophysical Journal
      American Astronomical Society

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references81

          • Record: found
          • Abstract: not found
          • Article: not found

          Inference from Iterative Simulation Using Multiple Sequences

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A Universal Density Profile from Hierarchical Clustering

            We use high-resolution N-body simulations to study the equilibrium density profiles of dark matter halos in hierarchically clustering universes. We find that all such profiles have the same shape, independent of halo mass, of initial density fluctuation spectrum, and of the values of the cosmological parameters. Spherically averaged equilibrium profiles are well fit over two decades in radius by a simple formula originally proposed to describe the structure of galaxy clusters in a cold dark matter universe. In any particular cosmology the two scale parameters of the fit, the halo mass and its characteristic density, are strongly correlated. Low-mass halos are significantly denser than more massive systems, a correlation which reflects the higher collapse redshift of small halos. The characteristic density of an equilibrium halo is proportional to the density of the universe at the time it was assembled. A suitable definition of this assembly time allows the same proportionality constant to be used for all the cosmologies that we have tested. We compare our results to previous work on halo density profiles and show that there is good agreement. We also provide a step-by-step analytic procedure, based on the Press-Schechter formalism, which allows accurate equilibrium profiles to be calculated as a function of mass in any hierarchical model.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Observational evidence for self-interacting cold dark matter

              Cosmological models with cold dark matter composed of weakly interacting particles predict overly dense cores in the centers of galaxies and clusters and an overly large number of halos within the Local Group compared to actual observations. We propose that the conflict can be resolved if the cold dark matter particles are self-interacting with a large scattering cross-section but negligible annihilation or dissipation. In this scenario, astronomical observations may enable us to study dark matter properties that are inaccessible in the laboratory
                Bookmark

                Author and article information

                Journal
                The Astrophysical Journal
                ApJ
                American Astronomical Society
                1538-4357
                February 20 2017
                April 10 2017
                : 836
                : 2
                : 231
                Article
                10.3847/1538-4357/aa5c90
                a0f429fe-a0e3-4262-97b1-3bdd2241de55
                © 2017

                http://iopscience.iop.org/info/page/text-and-data-mining

                http://creativecommons.org/licenses/by/3.0/

                History

                Comments

                Comment on this article