6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      22 factorial design-based biocompatible microneedle arrays containing artemether co-loaded with lumefantrine nanoparticles for transepidermal delivery.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The present study was intended to enhance the permeation of artemether and lumefantrine by encapsulating in dissolvable microneedle arrays for extended action. Lumefantrine-nanoparticles were synthesized using chitosan mediated gelation and optimized by 22 factorial designs. The particle size, zeta potential and % entrapment efficiency of the optimized nanoparticles F5 were 105 ± 3.64 nm, 24.4 ± 0.54 mV and 83.94 ± 1.71%, respectively. The nanoparticles showed a controlled-release of 79.15 ± 2.45% for lumefantrine after 24 h and stability for 6 months. A combination of biocompatible polymers (PVA and PVP K - 12) was used to develop dissolvable microneedle of artemether co-loaded lumefantrine nanoparticles. The SEM and TEM analysis confirmed the needle-shaped morphology with a size of 672 ± 0.99 μm. The in-vitro release of microneedle showed biphasic release pattern for both artemether and lumefantrine, with an initial burst followed by controlled-release profile. The ex-vivo study of optimized formulation showed 70.94 ± 2.45% and 65.87 ± 1.94% permeation for artemether and lumefantrine, respectively, after 24 h. Thus, microneedle-based delivery provides an alternative to painful intravenous administration and a promising approach to increase the penetration of drugs across the skin barrier. Graphical abstract Fabrication of microneedle arrays of artemether co-loaded with lumefantrine nanoparticles.

          Related collections

          Author and article information

          Journal
          Biomed Microdevices
          Biomedical microdevices
          Springer Science and Business Media LLC
          1572-8781
          1387-2176
          February 19 2020
          : 22
          : 1
          Affiliations
          [1 ] Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India.
          [2 ] Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India. shendepravin94@gmail.com.
          Article
          10.1007/s10544-020-0476-8
          10.1007/s10544-020-0476-8
          32076890
          a0f6eabb-5105-4fdd-8d39-65f67e51c8f4
          History

          Dissolvable microneedle,Factorial design,Malaria,Nanoparticles,Combination therapy

          Comments

          Comment on this article