70
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Combined target site ( kdr) mutations play a primary role in highly pyrethroid resistant phenotypes of Aedes aegypti from Saudi Arabia

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Pyrethroid resistance is a threat to effective vector control of Aedes aegypti, the vector of dengue, Zika and other arboviruses, but there are many major knowledge gaps on the mechanisms of resistance. In Jeddah and Makkah, the principal dengue-endemic areas of Saudi Arabia, pyrethroids are used widely for Ae. aegypti control but information about resistance remains sparse, and the underlying genetic basis is unknown. Findings from an ongoing study in this internationally significant area are reported here.

          Methods

          Aedes aegypti collected from each city were raised to adults and assayed for resistance to permethrin, deltamethrin (with and without the synergist piperonyl butoxide, PBO), fenitrothion, and bendiocarb. Two fragments of the voltage-gated sodium channel ( Vgsc), encompassing four previously identified mutation sites, were sequenced and subsequently genotyped to determine associations with resistance. Expression of five candidate genes ( CYP9J10, CYP9J28, CYP9J32, CYP9M6, ABCB4) previously associated with pyrethroid resistance was compared between assay survivors and controls.

          Results

          Jeddah and Makkah populations exhibited resistance to multiple insecticides and a similarly high prevalence of resistance to deltamethrin compared to a resistant Cayman strain, with a significant influence of age and exposure duration on survival . PBO pre-exposure increased pyrethroid mortality significantly in the Jeddah, but not the Makkah strain. Three potentially interacting Vgsc mutations were detected: V1016G and S989P were in perfect linkage disequilibrium in each strain and strongly predicted survival, especially in the Makkah strain, but were in negative linkage disequilibrium with 1534C, though some females with the Vgsc triple mutation were detected. The candidate gene CYP9J28 was significantly over-expressed in Jeddah compared to two susceptible reference strains, but none of the candidate genes was consistently up-regulated to a significant level in the Makkah strain.

          Conclusions

          Despite their proximity, Makkah and Jeddah exhibit significant differences in pyrethroid resistance phenotypes, with some evidence to suggest a different balance of mechanisms, for example with more impact associated with CYP450s in the Jeddah strain, and the dual kdr mutations 989P and 1016G in the more resistant Makkah strain. The results overall demonstrate a major role for paired target site mutations in pyrethroid resistance and highlight their utility for diagnostic monitoring.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s13071-017-2096-6) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Efficacy and Long-Term Safety of a Dengue Vaccine in Regions of Endemic Disease.

          A candidate tetravalent dengue vaccine is being assessed in three clinical trials involving more than 35,000 children between the ages of 2 and 16 years in Asian-Pacific and Latin American countries. We report the results of long-term follow-up interim analyses and integrated efficacy analyses.
            • Record: found
            • Abstract: found
            • Article: not found

            Pyrethroid resistance in Aedes aegypti and Aedes albopictus: Important mosquito vectors of human diseases.

            Aedes aegypti and A. albopictus mosquitoes are vectors of important human disease viruses, including dengue, yellow fever, chikungunya and Zika. Pyrethroid insecticides are widely used to control adult Aedes mosquitoes, especially during disease outbreaks. Herein, we review the status of pyrethroid resistance in A. aegypti and A. albopictus, mechanisms of resistance, fitness costs associated with resistance alleles and provide suggestions for future research. The widespread use of pyrethroids has given rise to many populations with varying levels of resistance worldwide, albeit with substantial geographical variation. In adult A. aegypti and A. albopictus, resistance levels are generally lower in Asia, Africa and the USA, and higher in Latin America, although there are exceptions. Susceptible populations still exist in several areas of the world, particularly in Asia and South America. Resistance to pyrethroids in larvae is also geographically widespread. The two major mechanisms of pyrethroid resistance are increased detoxification due to P450-monooxygenases, and mutations in the voltage sensitive sodium channel (Vssc) gene. Several P450s have been putatively associated with insecticide resistance, but the specific P450s involved are not fully elucidated. Pyrethroid resistance can be due to single mutations or combinations of mutations in Vssc. The presence of multiple Vssc mutations can lead to extremely high levels of resistance. Suggestions for future research needs are presented.
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Role of cytochrome P450s in insecticide resistance: impact on the control of mosquito-borne diseases and use of insecticides on Earth

              The fight against diseases spread by mosquitoes and other insects has enormous environmental, economic and social consequences. Chemical insecticides remain the first line of defence but the control of diseases, especially malaria and dengue fever, is being increasingly undermined by insecticide resistance. Mosquitoes have a large repertoire of P450s (over 100 genes). By pinpointing the key enzymes associated with insecticide resistance we can begin to develop new tools to aid the implementation of control interventions and reduce their environmental impact on Earth. Recent technological advances are helping us to build a functional profile of the P450 determinants of insecticide metabolic resistance in mosquitoes. Alongside, the cross-responses of mosquito P450s to insecticides and pollutants are also being investigated. Such research will provide the means to produce diagnostic tools for early detection of P450s linked to resistance. It will also enable the design of new insecticides with optimized efficacy in different environments.

                Author and article information

                Contributors
                A.Alnazawi@liverpool.ac.uk
                Jaberagely@gmail.com
                abuhassenm@yahoo.com
                philip.mccall@lstmed.ac.uk
                david.weetman@lstmed.ac.uk
                Journal
                Parasit Vectors
                Parasit Vectors
                Parasites & Vectors
                BioMed Central (London )
                1756-3305
                27 March 2017
                27 March 2017
                2017
                : 10
                : 161
                Affiliations
                [1 ]ISNI 0000 0004 1936 9764, GRID grid.48004.38, , Department of Vector Biology, Liverpool School of Tropical Medicine, ; Pembroke Place, Liverpool, L3 5QA UK
                [2 ]GRID grid.415696.9, , Saudi Ministry of Health, ; Riyadh, Saudi Arabia
                Article
                2096
                10.1186/s13071-017-2096-6
                5368989
                28347352
                a0fe918a-8abd-486a-a074-e24c7fc32f11
                © The Author(s). 2017

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 4 November 2016
                : 20 March 2017
                Funding
                Funded by: Saudi Cultural Bureau
                Funded by: EU grant FP7-281803
                Categories
                Research
                Custom metadata
                © The Author(s) 2017

                Parasitology
                dengue,saudi arabia,aedes aegypti,insecticide resistance,piperonyl butoxide (pbo),knockdown resistance

                Comments

                Comment on this article

                Related Documents Log