4
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Theaflavin alleviates inflammatory response and brain injury induced by cerebral hemorrhage via inhibiting the nuclear transcription factor kappa β-related pathway in rats

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          Intracerebral hemorrhage (ICH) is one of the most common acute cerebrovascular diseases with high mortality. Numerous studies have shown that inflammatory response played an important role in ICH-induced brain injury. Theaflavin (TF) extracted from black tea has various biological functions including anti-inflammatory activity. In this study, we investigated whether TF could inhibit ICH-induced inflammatory response in rats and explored its mechanism.

          Materials and methods

          ICH rat models were induced with type VII collagenase and pretreated with TF by gavage in different doses (25 mg/kg–100 mg/kg). Twenty-four hours after ICH attack, we evaluated the rats’ behavioral performance, the blood–brain barrier (BBB) integrity, and the formation of cerebral edema. The levels of reactive oxygen species (ROS) and inflammatory cytokines were examined by 2′,7′-dichlorofluorescin diacetate and enzyme-linked immunosorbent assay. Nissl staining and transferase dUTP nick end labeling (TUNEL) were aimed to detect the neuron loss and apoptosis, the mechanism of which was explored by Western blot.

          Results

          It was found that in the pretreated ICH rats TF significantly alleviated the behavioral defects, protected BBB integrity, and decreased the formation of cerebral edema and the levels of ROS as well as inflammatory cytokines (including interleukin-1 beta [IL-1β], IL-18, tumor nectosis factor-alpha, interferon-γ, transforming growth factor beta, and (C-X-C motif) ligand 1 [CXCL1]). Nissl staining and TUNEL displayed TF could protect against the neuron loss and apoptosis via inhibiting the activation of nuclear transcription factor kappa-β-p65 (NF-κβ-p65), caspase-1, and IL-1β. We also found that phorbol 12-myristate 13-acetate, a nonspecific activator of NF-κβ-p65, weakened the positive effect of TF on ICH-induced neural defects and neuron apoptosis by upregulating NF-κβ-related signaling pathway.

          Conclusion

          TF could alleviate ICH-induced inflammatory responses and brain injury in rats via inhibiting NF-κβ-related pathway, which may provide a new way for the therapy of ICH.

          Related collections

          Most cited references 48

          • Record: found
          • Abstract: found
          • Article: not found

          Inflammation in intracerebral hemorrhage: from mechanisms to clinical translation.

          Intracerebral hemorrhage (ICH) accounts for 10-15% of all strokes and is associated with high mortality and morbidity. Currently, no effective medical treatment is available to improve functional outcomes in patients with ICH. Potential therapies targeting secondary brain injury are arousing a great deal of interest in translational studies. Increasing evidence has shown that inflammation is the key contributor of ICH-induced secondary brain injury. Inflammation progresses in response to various stimuli produced after ICH. Hematoma components initiate inflammatory signaling via activation of microglia, subsequently releasing proinflammatory cytokines and chemokines to attract peripheral inflammatory infiltration. Hemoglobin (Hb), heme, and iron released after red blood cell lysis aggravate ICH-induced inflammatory injury. Danger associated molecular patterns such as high mobility group box 1 protein, released from damaged or dead cells, trigger inflammation in the late stage of ICH. Preclinical studies have identified inflammatory signaling pathways that are involved in microglial activation, leukocyte infiltration, toll-like receptor (TLR) activation, and danger associated molecular pattern regulation in ICH. Recent advances in understanding the pathogenesis of ICH-induced inflammatory injury have facilitated the identification of several novel therapeutic targets for the treatment of ICH. This review summarizes recent progress concerning the mechanisms underlying ICH-induced inflammation. We focus on the inflammatory signaling pathways involved in microglial activation and TLR signaling, and explore potential therapeutic interventions by targeting the removal of hematoma components and inhibition of TLR signaling. Copyright © 2013 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mice deficient in IL-1 beta-converting enzyme are defective in production of mature IL-1 beta and resistant to endotoxic shock.

            IL-1 beta-converting enzyme (ICE) cleaves pro-IL-1 beta to generate mature IL-1 beta. ICE is homologous to other proteins that have been implicated in apoptosis, including CED-3 and Nedd-2/lch-1. We generated ICE-deficient mice and observed that they are overtly normal but have a major defect in the production of mature IL-1 beta after stimulation with lipopolysaccharide. IL-1 alpha production is also impaired. ICE-deficient mice are resistant to endotoxic shock. Thymocytes and macrophages from the ICE-deficient animals undergo apoptosis normally. ICE therefore plays a dominant role in the generation of mature IL-1 beta, a previously unsuspected role in production of IL-1 alpha, but has no autonomous function in apoptosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inflammation after intracerebral hemorrhage.

              Intracerebral hemorrhage (ICH) is a devastating clinical event without effective therapies. Increasing evidence suggests that inflammatory mechanisms are involved in the progression of ICH-induced brain injury. Inflammation is mediated by cellular components, such as leukocytes and microglia, and molecular components, including prostaglandins, chemokines, cytokines, extracellular proteases, and reactive oxygen species. Better understanding of the role of the ICH-induced inflammatory response and its potential for modulation might have profound implications for patient treatment. In this review, a summary of the available literature on the inflammatory responses after ICH is presented along with discussion of some of the emerging opportunities for potential therapeutic strategies. In the near future, additional strategies that target inflammation could offer exciting new promise in the therapeutic approach to ICH.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                1177-8881
                2018
                12 June 2018
                : 12
                : 1609-1619
                Affiliations
                [1 ]Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China
                [2 ]School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
                Author notes
                Correspondence: Wenjun Fu, South China Research Center for Acupuncture and Moxibustion, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, People’s Republic of China, Fax +86 20 3935 8033, Email fu_qingzhu2006@ 123456126.com
                Article
                dddt-12-1609
                10.2147/DDDT.S164324
                6003286
                © 2018 Fu et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Categories
                Original Research

                Comments

                Comment on this article