7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Serum level of co-expressed hub miRNAs as diagnostic and prognostic biomarkers for pancreatic ductal adenocarcinoma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Sensitive and specific non-invasive biomarkers are urgently needed in order to improve the survival of patients with pancreatic ductal adenocarcinoma (PDAC), which is the fourth leading cause of cancer-related death. We aim to identify serum hub miRNAs as potential diagnostic and prognostic biomarkers for PDAC.

          Methods: A total of 2578 serum miRNA expression data from 88 PDAC patients and 19 healthy subjects were downloaded from the Gene Expression Omnibus database. Weighted gene co-expression network analysis (WGCNA) was constructed and significant modules were extracted from the network by WGCNA R package. Network modules and hub miRNAs closely related to PDAC were identified. The prognostic value of hub miRNAs was assessed by Kaplan-Meier overall survival analysis.

          Results: Two modules strongly associated with PDAC were identified by WGCNA, which were labeled as turquoise and brown respectively. Within each module, twenty hub miRNAs were found. At the functional level, turquoise module was mainly associated with tumorigenesis pathways such as P53 and WNT signaling pathway, while the brown module was mostly related to the pathways of cancer such as RNA transport and MAPK signaling pathway. Utilizing overall survival analyses, five “real” miRNAs were able to stratify PDAC patients into low-risk and high-risk groups.

          Conclusions: The association of specific Hub miRNAs with the development of pancreatic cancer was established by WGCNA analysis. Five miRNAs (mir-16-2-3p, mir-890, mir-3201, mir-602, and mir-877) were identified as potential diagnostic and prognostic biomarkers for PDAC.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer statistics, 2018

          Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States and compiles the most recent data on cancer incidence, mortality, and survival. Incidence data, available through 2014, were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data, available through 2015, were collected by the National Center for Health Statistics. In 2018, 1,735,350 new cancer cases and 609,640 cancer deaths are projected to occur in the United States. Over the past decade of data, the cancer incidence rate (2005-2014) was stable in women and declined by approximately 2% annually in men, while the cancer death rate (2006-2015) declined by about 1.5% annually in both men and women. The combined cancer death rate dropped continuously from 1991 to 2015 by a total of 26%, translating to approximately 2,378,600 fewer cancer deaths than would have been expected if death rates had remained at their peak. Of the 10 leading causes of death, only cancer declined from 2014 to 2015. In 2015, the cancer death rate was 14% higher in non-Hispanic blacks (NHBs) than non-Hispanic whites (NHWs) overall (death rate ratio [DRR], 1.14; 95% confidence interval [95% CI], 1.13-1.15), but the racial disparity was much larger for individuals aged <65 years (DRR, 1.31; 95% CI, 1.29-1.32) compared with those aged ≥65 years (DRR, 1.07; 95% CI, 1.06-1.09) and varied substantially by state. For example, the cancer death rate was lower in NHBs than NHWs in Massachusetts for all ages and in New York for individuals aged ≥65 years, whereas for those aged <65 years, it was 3 times higher in NHBs in the District of Columbia (DRR, 2.89; 95% CI, 2.16-3.91) and about 50% higher in Wisconsin (DRR, 1.78; 95% CI, 1.56-2.02), Kansas (DRR, 1.51; 95% CI, 1.25-1.81), Louisiana (DRR, 1.49; 95% CI, 1.38-1.60), Illinois (DRR, 1.48; 95% CI, 1.39-1.57), and California (DRR, 1.45; 95% CI, 1.38-1.54). Larger racial inequalities in young and middle-aged adults probably partly reflect less access to high-quality health care. CA Cancer J Clin 2018;68:7-30. © 2018 American Cancer Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cellular senescence and tumor suppressor gene p16.

            Cellular senescence is an irreversible arrest of cell growth. Biochemical and morphological changes occur during cellular senescence, including the formation of a unique cellular morphology such as flattened cytoplasm. Function of mitochondria, endoplasmic reticulum and lysosomes are affected resulting in the inhibition of lysosomal and proteosomal pathways. Cellular senescence can be triggered by a number of factors including, aging, DNA damage, oncogene activation and oxidative stress. While the molecular mechanism of senescence involves p16 and p53 tumor suppressor genes and telomere shortening, this review is focused on the mechanism of p16 control. The p16-mediated senescence acts through the retinoblastoma (Rb) pathway inhibiting the action of the cyclin dependant kinases leading to G1 cell cycle arrest. Rb is maintained in a hypophosphorylated state resulting in the inhibition of transcription factor E2F1. Regulation of p16 expression is complex and involves epigenetic control and multiple transcription factors. PRC1 (Pombe repressor complex (1) and PRC2 (Pombe repressor complex (2) proteins and histone deacetylases play an important role in the promoter hypermethylation for suppressing p16 expression. While transcription factors YY1 and Id1 suppress p16 expression, transcription factors CTCF, Sp1 and Ets family members activate p16 transcription. Senescence occurs with the inactivation of suppressor elements leading to the enhanced expression of p16. Copyright © 2011 UICC.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of the p16 tumor suppressor gene in cancer.

              Since its discovery as a CDKI (cyclin-dependent kinase inhibitor) in 1993, the tumor suppressor p16 (INK4A/MTS-1/CDKN2A) has gained widespread importance in cancer. The frequent mutations and deletions of p16 in human cancer cell lines first suggested an important role for p16 in carcinogenesis. This genetic evidence for a causal role was significantly strengthened by the observation that p16 was frequently inactivated in familial melanoma kindreds. Since then, a high frequency of p16 gene alterations were observed in many primary tumors. In human neoplasms, p16 is silenced in at least three ways: homozygous deletion, methylation of the promoter, and point mutation. The first two mechanisms comprise the majority of inactivation events in most primary tumors. Additionally, the loss of p16 may be an early event in cancer progression, because deletion of at least one copy is quite high in some premalignant lesions. p16 is a major target in carcinogenesis, rivaled in frequency only by the p53 tumor-suppressor gene. Its mechanism of action as a CDKI has been elegantly elucidated and involves binding to and inactivating the cyclin D-cyclin-dependent kinase 4 (or 6) complex, and thus renders the retinoblastoma protein inactive. This effect blocks the transcription of important cell-cycle regulatory proteins and results in cell-cycle arrest. Although p16 may be involved in cell senescence, the physiologic role of p16 is still unclear. Future work will focus on studies of the upstream events that lead to p16 expression and its mechanism of regulation, and perhaps lead to better therapeutic strategies that can improve the clinical course of many lethal cancers.
                Bookmark

                Author and article information

                Journal
                J Cancer
                J Cancer
                jca
                Journal of Cancer
                Ivyspring International Publisher (Sydney )
                1837-9664
                2018
                11 October 2018
                : 9
                : 21
                : 3991-3999
                Affiliations
                [1 ]Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
                [2 ]Desautels Faculty of Management, McGill University, Montreal, Quebec, H3A 1G5, Canada.
                [3 ]Schulich School of Music, McGill University, Montreal, Quebec, H3A 1E3, Canada.
                [4 ]Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center, Montreal, Quebec, H2X0A9, Canada.
                [5 ]State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.
                [6 ]Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
                [7 ]Department of Mathematics, Nanjing University, 210023, China.
                [8 ]Department of Pathology, Research Institute of McGill University Health Center, Montreal, Quebec, H4A 3J1, Canada
                Author notes
                ✉ Corresponding authors: Chen-guang Zhang, Ting Wu & Zu-hua Gao. (Tel +86-13146303355; email: chzhang@ 123456ccmu.edu.cn , tingwu@ 123456nju.edu.cn and zu-hua.gao@ 123456mcgill.ca )

                Competing Interests: The authors have declared that no competing interest exists.

                Article
                jcav09p3991
                10.7150/jca.27697
                6218787
                30410604
                a105d26d-fecf-40bd-9b12-15a5c415ec8d
                © Ivyspring International Publisher

                This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license ( https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions.

                History
                : 6 June 2018
                : 29 July 2018
                Categories
                Research Paper

                Oncology & Radiotherapy
                hub mirnas,mirnas,pancreatic ductal adenocarcinoma
                Oncology & Radiotherapy
                hub mirnas, mirnas, pancreatic ductal adenocarcinoma

                Comments

                Comment on this article