51
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Do COVID-19 RNA-based vaccines put at risk of immune-mediated diseases? In reply to “potential antigenic cross-reactivity between SARS-CoV-2 and human tissue with a possible link to an increase in autoimmune diseases”

      letter

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To the Editor, I read with great interest the article by Vojdani et al. [1], concerning the hypothesis of a molecular mimicry mechanism between the nucleoprotein/spike protein of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and self-antigens. Viruses are notoriously involved in the pathogenesis of autoimmune diseases [2], and the authors reasonably conclude that such a cross-reactivity might lead to the development of immune-mediated disorders in COronaVirus Disease-19 (COVID-19) patients in the long term. The authors also suggest that a similar scenario might take place following COVID-19 vaccination. Vaccine-associated autoimmunity is a well-known phenomenon attributed to either the cross-reactivity between antigens or the effect of adjuvant [3]. When coming to COVID-19 vaccine, this matter is further complicated by the nucleic acid formulation and the accelerated development process imposed by the emergency pandemic situation [4]. Currently, lipid nanoparticle-formulated mRNA vaccines coding for the SARS-CoV-2 full-length spike protein have shown the highest level of evidence according to the efficacy and safety profile in clinical trials, being therefore authorized and recommended for use in the United States and Europe. Although the results from phase I and II/III studies have not raised serious safety concerns [5], the time of observation was extremely short and the target population not defined. Reported local and systemic adverse events seemed to be dose-dependent and more common in participants aged under 55 years. These results presumably depend on the higher reactogenicity occurring in younger people that may confer greater protection towards viral antigens but also predispose to a higher burden of immunological side effects. The reactogenicity of COVID-19 mRNA vaccine in individuals suffering from immune-mediated diseases and having therefore a pre-existent dysregulation of the immune response has not been investigated. It may be hypothesized that immunosuppressive agents prescribed to these patients mitigate or even prevent side effects related to vaccine immunogenicity. Besides the mechanism of molecular mimicry, mRNA vaccines may give rise to a cascade of immunological events eventually leading to the aberrant activation of the innate and acquired immune system. RNA vaccines have been principally designed for cancer and infectious diseases. This innovative therapeutic approach is based on the synthesis of RNA chains coding for desired antigenic proteins and exploits the intrinsic immunogenicity of nucleic acids. In order to avoid degradation by RNases, RNA can be encapsulated in nanoparticles or liposomes, which deliver the cargo inside target cells following a process of endocytosis. mRNA is then translated into immunogenic proteins by cell ribosomal machinery [6]. However, prior to the translation, mRNA may bind pattern recognition receptors (PRRs) in endosomes or cytosol. Toll-like receptor (TLR)3, TLR7 and TLR8 are able to recognize chains of double-stranded (ds)RNA or single-stranded (ss)RNA in endosomes, while retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5) may detect short and long filaments of dsRNA in the cytosol. The final result is the activation of several pro-inflammatory cascades, including the assembly of inflammasome platforms, the type I interferon (IFN) response and the nuclear translocation of the transcription factor nuclear factor (NF)-kB [7]. Importantly, the up-regulation of these immunological pathways is widely considered to be at the basis of several immune-mediated diseases, especially in genetically predisposed subjects who have an impaired clearance of nucleic acids [8]. This could particularly hold true in young female individuals, due to the over-expression of X-linked genes presiding over the antiviral response and the stimulatory effect played by estrogens on the immune system. The X chromosome hosts several genes involved in the immune response, including TLR7 and TLR8 genes, and about 10% of microRNAs indirectly controlling the activation of the immune system [9]. Therefore, young and female patients who are already affected or predisposed (e.g. immunological and serological abnormalities in absence of clinical symptoms, familiarity for immune-mediated diseases) to autoimmune or autoinflammatory disorders should be carefully evaluated for the benefits and risks of COVID-19 mRNA vaccination. According to epidemiological data, these subjects may develop the infection asymptomatically or pauci-symptomatically and it is worth noting that, in line with the article of Vojdani et al. [1], the presence of autoreactive cells and autoantibodies cross-reacting against SARS-CoV-2 epitopes may even turn naturally protective towards the infection. Until proven otherwise, the administration of a nucleic acid vaccine may instead put these individuals at risk of unwanted immunological side effects by either sensitizing the PRRs or generating cross-reactive cell clones and antibodies. Moreover, COVID-19 mRNA vaccine might differently stimulate myeloid or plasmacytoid dendritic cells (DCs), generating an unbalance in the downstream cytokine pathways that play a crucial role in autoimmunity and autoinflammation [3]. Modifications in nucleoside and nanoparticle composition through a proper manufacturing may help to prevent some of these drawbacks. For instance, the substitution of uridine with pseudouridine was shown to reduce immunogenicity and type I IFN production while enhancing the synthesis of viral antigenic proteins [10]. A strong type I IFN response may, in fact, negatively affect the vaccine efficacy by suppressing the process of mRNA translation [10]. However, type I IFNs play a beneficial role in strengthening the antiviral response, as they favor the maturation of DCs, the CD8+ T cell-mediated cytotoxicity and the secretion of several cytokines, like interleukin (IL)-12 and IL-23 [11]. Notably, polymorphisms in the genes encoding these cytokines or their receptors have been associated with the susceptibility to autoimmune diseases [12]. Additionally, an excessive production of type I IFNs may result in the breakdown of the immunological tolerance and, therefore, in autoimmunity [10]. Lipid components may also dictate the type and intensity of the immune response, by enhancing the production of IFN-γ, IL-2 and tumor necrosis factor (TNF)-α with the subsequent activation of both CD4+ and CD8+ T lymphocytes. Although this is not the case of the authorized COVID-19 mRNA vaccines, future formulations containing adjuvant like TLR agonists [13] may exacerbate pre-existing autoimmune or autoinflammatory disorders and should therefore be discouraged in this cohort of patients. Given the current state of the art, my view is that individuals with a dysfunctional immune response should receive the COVID-19 mRNA vaccine only if the benefits of this approach clearly outweigh any risks and after a careful evaluation case by case. Funding sources None. Declaration of Competing Interest The author has no competing interests to declare.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: found
          • Article: not found

          Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine

          Abstract Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the resulting coronavirus disease 2019 (Covid-19) have afflicted tens of millions of people in a worldwide pandemic. Safe and effective vaccines are needed urgently. Methods In an ongoing multinational, placebo-controlled, observer-blinded, pivotal efficacy trial, we randomly assigned persons 16 years of age or older in a 1:1 ratio to receive two doses, 21 days apart, of either placebo or the BNT162b2 vaccine candidate (30 μg per dose). BNT162b2 is a lipid nanoparticle–formulated, nucleoside-modified RNA vaccine that encodes a prefusion stabilized, membrane-anchored SARS-CoV-2 full-length spike protein. The primary end points were efficacy of the vaccine against laboratory-confirmed Covid-19 and safety. Results A total of 43,548 participants underwent randomization, of whom 43,448 received injections: 21,720 with BNT162b2 and 21,728 with placebo. There were 8 cases of Covid-19 with onset at least 7 days after the second dose among participants assigned to receive BNT162b2 and 162 cases among those assigned to placebo; BNT162b2 was 95% effective in preventing Covid-19 (95% credible interval, 90.3 to 97.6). Similar vaccine efficacy (generally 90 to 100%) was observed across subgroups defined by age, sex, race, ethnicity, baseline body-mass index, and the presence of coexisting conditions. Among 10 cases of severe Covid-19 with onset after the first dose, 9 occurred in placebo recipients and 1 in a BNT162b2 recipient. The safety profile of BNT162b2 was characterized by short-term, mild-to-moderate pain at the injection site, fatigue, and headache. The incidence of serious adverse events was low and was similar in the vaccine and placebo groups. Conclusions A two-dose regimen of BNT162b2 conferred 95% protection against Covid-19 in persons 16 years of age or older. Safety over a median of 2 months was similar to that of other viral vaccines. (Funded by BioNTech and Pfizer; ClinicalTrials.gov number, NCT04368728.)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Potential antigenic cross-reactivity between SARS-CoV-2 and human tissue with a possible link to an increase in autoimmune diseases

            Since the outbreak of COVID-19 caused by SARS-CoV-2, we tested 5 different blood specimens that were confirmed positive for SARS-CoV-2 IgG and IgM antibodies [1]. The measurements were for anti-nuclear antibody (ANA), anti-extractable nuclear antigen (ENA), anti-double-stranded DNA (dsDNA), actin antibody, mitochondrial antibody, rheumatoid factor (RF), and C1q immune complexes. We were surprised to find out that 3 of the 5 specimens had significant elevations in ANA, ENA, actin and mitochondrial antibodies, but not against dsDNA or RF. This prompted us to investigate patterns of cross-reactivity between SARS-CoV-2 and autoimmune target proteins. Vaccine-induced autoimmunity from autoimmune cross-reactivity is associated with narcolepsy, Guillain-Barré syndrome, multiple sclerosis, demyelinating neuropathies, systemic lupus erythematosus, and postural orthostatic tachycardia syndrome in susceptible subgroups as reported by Segal and Shoenfeld [2]. Due to the significant red flags for the potential cross-reactive interactions with the current COVID-19 pandemic, we studied the relationships between spike and nuclear proteins of SARS-CoV-2 and autoimmune target proteins. Commercially available mouse monoclonal antibody made against recombinant SARS coronavirus spike protein and rabbit monoclonal antibody made against SARS coronavirus nucleoprotein were applied at optimal dilution to the SARS-CoV-2 proteins and to 50 different tissue antigens using enzyme-linked immunosorbent assay (ELISA). Recombinant SARS-CoV-2 spike protein S1 and recombinant SARS-CoV-2 nucleocapsid protein were purchased from RayBiotech. ELISA wells were coated with nuclear antigens, dsDNA, F-actin, and mitochondria (M2) antigen purchased from different companies. An additional 45 tissue antigens used in this study have been previously described [9]. Each SARS-CoV-2 antibody was applied to quadruplicate wells. After the completion of all ELISA steps, the developed color was measured at 405 nm. Looking at the reaction between SARS-CoV-2 spike protein antibody and tissue proteins (Fig. 1A), we found that the strongest reactions were with transglutaminase 3 (tTG3), transglutaminase 2 (tTG2), ENA, myelin basic protein (MBP), mitochondria, nuclear antigen (NA), α-myosin, thyroid peroxidase (TPO), collagen, claudin 5 + 6, and S100B. The reaction of this antibody was not as strong with several other antigens (Fig. 1A). Fig. 1 (A) Reaction of anti-SARS-CoV-2 spike protein monoclonal antibody with human tissue antigens. (B) Reaction of anti-SARS-CoV-2 nucleoprotein monoclonal antibody with human tissue antigens. Fig. 1 The nucleoprotein antibody showed some overlap in immune cross-reactivity with anti-spike protein antibody. As shown in Fig. 1B, nucleoprotein antibody reacted strongly with mitochondria, tTG6, NA, TPO, ENA, TG, actin, and MBP. Similar to spike protein, the nucleoprotein antibody reaction was not as strong with several other antigens as shown in Fig. 1A and B. As the number of SARS-CoV-2 infections increase from day to day, scientists are learning that the damage caused by this virus can extend well beyond the lungs, where infection can lead to pneumonia and the often fatal condition called acute respiratory distress syndrome [3]. The virus can in fact affect the body from head to toe, including the nervous [4], cardiovascular [5], immune [6], and digestive systems [7]. Is it possible that some of the extensive organ, tissue, and cellular damage done by SARS-CoV-2 is due to viral antigenic mimicry with human tissue? If the answer is yes, then we may face an increase in the rates of autoimmune disease in the future, because any factor that causes chronic inflammation in the body can potentially induce autoimmune disease. Because SARS-CoV-2 attacks the respiratory system first, in a very interesting letter [8] Kanduc and Shoenfeld suggested that because the SARS-CoV-2 spike glycoprotein and lung surfactant proteins shared 13 out of 24 pentapeptides, the immune response following infection with SARS-CoV-2 may lead to cross-reactions with pulmonary surfactant proteins, followed by SARS-CoV-2-associated lung disease [8]. Based on their findings, they warned against the use of the entire SARS-CoV-2 antigens in the vaccines and cautioned that perhaps the use of only unique peptides would be the most effective way to fight the SARS-CoV-2 infection. Very similar suggestions were made by Razim et al., in designing a vaccine against Clostridium difficile [9]. Two sequences, peptide 9 and peptide 10, of C. difficile were recognized not only by the sera of patients with C. difficile infections but also by the sera of patients with autoimmune disease. Razim et al. concluded that before considering a protein as a vaccine antigen, special care should be taken in analyzing the sequence of tissue cross-reactive epitopes in order to avoid possible future side effects [9]. We agree with Razim et al., and we feel that our own findings that 21 out of 50 tissue antigens had moderate to strong reactions with the SARS-CoV-2 antibodies are a sufficiently strong indication of cross-reaction between SARS-CoV-2 proteins and a variety of tissue antigens beyond just pulmonary tissue, which could lead to autoimmunity against connective tissue and the cardiovascular, gastrointestinal, and nervous systems. We live in critical times when the world may be veering towards the very real possibility of requiring immunity certification “passports” earned by prior infection with SARS-CoV-2 or vaccination before being allowed to travel, or perhaps even to work [10]. At the moment, scientists are frantically trying to develop either a definitive cure, neutralizing antibodies, or a vaccine to protect us from contracting the disease in the first place, and they want it right now. We must consider that finding a vaccine for a disease may normally take years. There are reasons for all the cautions involved in developing a vaccine, not the least of which are unwanted side-effects. In light of the information discussed above about the cross-reactivity of the SARS-CoV-2 proteins with human tissues and the possibility of either inducing autoimmunity, exacerbating already unhealthy conditions, or otherwise resulting in unforeseen consequences, it would only be prudent to do more extensive research regarding the autoimmune-inducing capacity of the SARS-CoV-2 antigens. The promotion and implementation of such an aggressive “immune passport” program worldwide in the absence of thorough and meticulous safety studies may exact a monumental cost on humanity in the form of another epidemic, this time a rising tide of increased autoimmune diseases and the years of suffering that come with them. Funding This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. Declaration of Competing Interest None.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The X chromosome and sex-specific effects in infectious disease susceptibility

              The X chromosome and X-linked variants have largely been ignored in genome-wide and candidate association studies of infectious diseases due to the complexity of statistical analysis of the X chromosome. This exclusion is significant, since the X chromosome contains a high density of immune-related genes and regulatory elements that are extensively involved in both the innate and adaptive immune responses. Many diseases present with a clear sex bias, and apart from the influence of sex hormones and socioeconomic and behavioural factors, the X chromosome, X-linked genes and X chromosome inactivation mechanisms contribute to this difference. Females are functional mosaics for X-linked genes due to X chromosome inactivation and this, combined with other X chromosome inactivation mechanisms such as genes that escape silencing and skewed inactivation, could contribute to an immunological advantage for females in many infections. In this review, we discuss the involvement of the X chromosome and X inactivation in immunity and address its role in sexual dimorphism of infectious diseases using tuberculosis susceptibility as an example, in which male sex bias is clear, yet not fully explored.
                Bookmark

                Author and article information

                Journal
                Clin Immunol
                Clin Immunol
                Clinical Immunology (Orlando, Fla.)
                Elsevier Inc.
                1521-6616
                1521-7035
                8 January 2021
                March 2021
                8 January 2021
                : 224
                : 108665
                Affiliations
                Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Messina, University Hospital "G. Martino", Messina, Italy
                Author notes
                [* ]Corresponding author at: Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Messina, University Hospital "G. Martino", via Consolare Valeria 1, 98100 Messina, Italy.
                Article
                S1521-6616(21)00002-4 108665
                10.1016/j.clim.2021.108665
                7833091
                33429060
                a10632a8-613e-4f70-a6f1-8057ae35250e
                © 2021 Elsevier Inc. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 24 December 2020
                : 6 January 2021
                Categories
                Letter to the Editor

                Immunology
                autoimmunity,autoinflammation,covid-19,immune response,mrna vaccine,sars-cov-2,type i interferon

                Comments

                Comment on this article