Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

Hybrids of Nucleic Acids and Carbon Nanotubes for Nanobiotechnology

Nanomaterials

MDPI

single-stranded DNA, double-stranded DNA, RNA, carbon nanotubes (CNTs), functionalization

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      Recent progress in the combination of nucleic acids and carbon nanotubes (CNTs) has been briefly reviewed here. Since discovering the hybridization phenomenon of DNA molecules and CNTs in 2003, a large amount of fundamental and applied research has been carried out. Among thousands of papers published since 2003, approximately 240 papers focused on biological applications were selected and categorized based on the types of nucleic acids used, but not the types of CNTs. This survey revealed that the hybridization phenomenon is strongly affected by various factors, such as DNA sequences, and for this reason, fundamental studies on the hybridization phenomenon are important. Additionally, many research groups have proposed numerous practical applications, such as nanobiosensors. The goal of this review is to provide perspective on biological applications using hybrids of nucleic acids and CNTs.

      Related collections

      Most cited references 242

      • Record: found
      • Abstract: found
      • Article: not found

      DNA-assisted dispersion and separation of carbon nanotubes.

      Carbon nanotubes are man-made one-dimensional carbon crystals with different diameters and chiralities. Owing to their superb mechanical and electrical properties, many potential applications have been proposed for them. However, polydispersity and poor solubility in both aqueous and non-aqueous solution impose a considerable challenge for their separation and assembly, which is required for many applications. Here we report our finding of DNA-assisted dispersion and separation of carbon nanotubes. Bundled single-walled carbon nanotubes are effectively dispersed in water by their sonication in the presence of single-stranded DNA (ssDNA). Optical absorption and fluorescence spectroscopy and atomic force microscopy measurements provide evidence for individually dispersed carbon nanotubes. Molecular modelling suggests that ssDNA can bind to carbon nanotubes through pi-stacking, resulting in helical wrapping to the surface. The binding free energy of ssDNA to carbon nanotubes rivals that of two nanotubes for each other. We also demonstrate that DNA-coated carbon nanotubes can be separated into fractions with different electronic structures by ion-exchange chromatography. This finding links one of the central molecules in biology to a technologically very important nanomaterial, and opens the door to carbon-nanotube-based applications in biotechnology.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes.

        Single-walled carbon nanotubes (SWNTs) are a family of molecules that have the same cylindrical shape but different chiralities. Many fundamental studies and technological applications of SWNTs require a population of tubes with identical chirality that current syntheses cannot provide. The SWNT sorting problem-that is, separation of a synthetic mixture of tubes into individual single-chirality components-has attracted considerable attention in recent years. Intense efforts so far have focused largely on, and resulted in solutions for, a weaker version of the sorting problem: metal/semiconductor separation. A systematic and general method to purify each and every single-chirality species of the same electronic type from the synthetic mixture of SWNTs is highly desirable, but the task has proven to be insurmountable to date. Here we report such a method, which allows purification of all 12 major single-chirality semiconducting species from a synthetic mixture, with sufficient yield for both fundamental studies and application development. We have designed an effective search of a DNA library of approximately 10(60) in size, and have identified more than 20 short DNA sequences, each of which recognizes and enables chromatographic purification of a particular nanotube species from the synthetic mixture. Recognition sequences exhibit a periodic purine-pyrimidines pattern, which can undergo hydrogen-bonding to form a two-dimensional sheet, and fold selectively on nanotubes into a well-ordered three-dimensional barrel. We propose that the ordered two-dimensional sheet and three-dimensional barrel provide the structural basis for the observed DNA recognition of SWNTs.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors.

          The ability to solubilize single-wall and multiwall carbon nanotubes (CNT) in the presence of the perfluorinated polymer Nafion is described. Such use of Nafion as a solubilizing agent for CNT overcomes a major obstacle for creating CNT-based biosensing devices. Their association with Nafion does not impair the electrocatalytic properties of CNT. The resulting CNT/Nafion modified glassy-carbon electrodes exhibit a strong and stable electrocatalytic response toward hydrogen peroxide. The marked acceleration of the hydrogen peroxide redox process is very attractive for the operation of oxidase-based amperometric biosensors, as illustrated for the highly selective low-potential (-0.05 V vs Ag/AgCl) biosensing of glucose. These findings open the door for using CNT in a wide range of chemical sensors and nanoscale electronic devices.
            Bookmark

            Author and article information

            Affiliations
            Biophysics Section, Department of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 1628601, Japan; E-Mail: meicun2006@ 123456163.com ; Tel.: +81-352288228
            Contributors
            Role: Academic Editor
            Journal
            Nanomaterials (Basel)
            Nanomaterials (Basel)
            nanomaterials
            Nanomaterials
            MDPI
            2079-4991
            12 March 2015
            March 2015
            : 5
            : 1
            : 321-350
            5312852
            10.3390/nano5010321
            nanomaterials-05-00321
            (Academic Editor)
            © 2015 by the authors; licensee MDPI, Basel, Switzerland.

            This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).

            Categories
            Review

            Comments

            Comment on this article