113
views
0
recommends
+1 Recommend
0 collections
    8
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      What properties characterize the hub proteins of the protein-protein interaction network of Saccharomyces cerevisiae?

      research-article
      1 , 1 , 1 , 1 ,
      Genome Biology
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          An analysis of hubs (proteins with many interactors) and non-hubs in the S. cerevisiae protein interaction network shows that hub proteins are enriched with multiple and repeated domains.

          Abstract

          Background

          Most proteins interact with only a few other proteins while a small number of proteins (hubs) have many interaction partners. Hub proteins and non-hub proteins differ in several respects; however, understanding is not complete about what properties characterize the hubs and set them apart from proteins of low connectivity. Therefore, we have investigated what differentiates hubs from non-hubs and static hubs (party hubs) from dynamic hubs (date hubs) in the protein-protein interaction network of Saccharomyces cerevisiae.

          Results

          The many interactions of hub proteins can only partly be explained by bindings to similar proteins or domains. It is evident that domain repeats, which are associated with binding, are enriched in hubs. Moreover, there is an over representation of multi-domain proteins and long proteins among the hubs. In addition, there are clear differences between party hubs and date hubs. Fewer of the party hubs contain long disordered regions compared to date hubs, indicating that these regions are important for flexible binding but less so for static interactions. Furthermore, party hubs interact to a large extent with each other, supporting the idea of party hubs as the cores of highly clustered functional modules. In addition, hub proteins, and in particular party hubs, are more often ancient. Finally, the more recent paralogs of party hubs are underrepresented.

          Conclusion

          Our results indicate that multiple and repeated domains are enriched in hub proteins and, further, that long disordered regions, which are common in date hubs, are particularly important for flexible binding.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: not found
          • Article: not found

          Basic Local Alignment Search Tool

          S Altschul (1990)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Error and attack tolerance of complex networks

            Many complex systems, such as communication networks, display a surprising degree of robustness: while key components regularly malfunction, local failures rarely lead to the loss of the global information-carrying ability of the network. The stability of these complex systems is often attributed to the redundant wiring of the functional web defined by the systems' components. In this paper we demonstrate that error tolerance is not shared by all redundant systems, but it is displayed only by a class of inhomogeneously wired networks, called scale-free networks. We find that scale-free networks, describing a number of systems, such as the World Wide Web, Internet, social networks or a cell, display an unexpected degree of robustness, the ability of their nodes to communicate being unaffected by even unrealistically high failure rates. However, error tolerance comes at a high price: these networks are extremely vulnerable to attacks, i.e. to the selection and removal of a few nodes that play the most important role in assuring the network's connectivity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae.

              Two large-scale yeast two-hybrid screens were undertaken to identify protein-protein interactions between full-length open reading frames predicted from the Saccharomyces cerevisiae genome sequence. In one approach, we constructed a protein array of about 6,000 yeast transformants, with each transformant expressing one of the open reading frames as a fusion to an activation domain. This array was screened by a simple and automated procedure for 192 yeast proteins, with positive responses identified by their positions in the array. In a second approach, we pooled cells expressing one of about 6,000 activation domain fusions to generate a library. We used a high-throughput screening procedure to screen nearly all of the 6,000 predicted yeast proteins, expressed as Gal4 DNA-binding domain fusion proteins, against the library, and characterized positives by sequence analysis. These approaches resulted in the detection of 957 putative interactions involving 1,004 S. cerevisiae proteins. These data reveal interactions that place functionally unclassified proteins in a biological context, interactions between proteins involved in the same biological function, and interactions that link biological functions together into larger cellular processes. The results of these screens are shown here.
                Bookmark

                Author and article information

                Journal
                Genome Biol
                Genome Biology
                BioMed Central (London )
                1465-6906
                1465-6914
                2006
                16 June 2006
                : 7
                : 6
                : R45
                Affiliations
                [1 ]Stockholm Bioinformatics Center, Stockholm University, Stockholm, Sweden
                Article
                gb-2006-7-6-r45
                10.1186/gb-2006-7-6-r45
                1779539
                16780599
                a10b61bb-a2a9-4537-893b-3bff9668fbf8
                Copyright © 2006 Ekman et al.; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 6 March 2006
                : 4 April 2006
                : 27 April 2006
                Categories
                Research

                Genetics
                Genetics

                Comments

                Comment on this article