82
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Electromagnetic fields act via activation of voltage-gated calcium channels to produce beneficial or adverse effects

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The direct targets of extremely low and microwave frequency range electromagnetic fields (EMFs) in producing non-thermal effects have not been clearly established. However, studies in the literature, reviewed here, provide substantial support for such direct targets. Twenty-three studies have shown that voltage-gated calcium channels (VGCCs) produce these and other EMF effects, such that the L-type or other VGCC blockers block or greatly lower diverse EMF effects. Furthermore, the voltage-gated properties of these channels may provide biophysically plausible mechanisms for EMF biological effects. Downstream responses of such EMF exposures may be mediated through Ca 2+/calmodulin stimulation of nitric oxide synthesis. Potentially, physiological/therapeutic responses may be largely as a result of nitric oxide-cGMP-protein kinase G pathway stimulation. A well-studied example of such an apparent therapeutic response, EMF stimulation of bone growth, appears to work along this pathway. However, pathophysiological responses to EMFs may be as a result of nitric oxide-peroxynitrite-oxidative stress pathway of action. A single such well-documented example, EMF induction of DNA single-strand breaks in cells, as measured by alkaline comet assays, is reviewed here. Such single-strand breaks are known to be produced through the action of this pathway. Data on the mechanism of EMF induction of such breaks are limited; what data are available support this proposed mechanism. Other Ca 2+-mediated regulatory changes, independent of nitric oxide, may also have roles. This article reviews, then, a substantially supported set of targets, VGCCs, whose stimulation produces non-thermal EMF responses by humans/higher animals with downstream effects involving Ca 2+/calmodulin-dependent nitric oxide increases, which may explain therapeutic and pathophysiological effects.

          Related collections

          Most cited references113

          • Record: found
          • Abstract: found
          • Article: not found

          The small GTP-binding protein rac regulates growth factor-induced membrane ruffling.

          The function of rac, a ras-related GTP-binding protein, was investigated in fibroblasts by microinjection. In confluent serum-starved Swiss 3T3 cells, rac1 rapidly stimulated actin filament accumulation at the plasma membrane, forming membrane ruffles. Several growth factors and activated H-ras also induced membrane ruffling, and this response was prevented by a dominant inhibitory mutant rac protein, N17rac1. This suggests that endogenous rac proteins are required for growth factor-induced membrane ruffling. In addition to membrane ruffling, a later response to both rac1 microinjection and some growth factors was the formation of actin stress fibers, a process requiring endogenous rho proteins. Using N17rac1 we have shown that these growth factors act through rac to stimulate this rho-dependent response. We propose that rac and rho are essential components of signal transduction pathways linking growth factors to the organization of polymerized actin.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action.

            To date, studies suggest that biological signaling by nitric oxide (NO) is primarily mediated by cGMP, which is synthesized by NO-activated guanylyl cyclases and broken down by cyclic nucleotide phosphodiesterases (PDEs). Effects of cGMP occur through three main groups of cellular targets: cGMP-dependent protein kinases (PKGs), cGMP-gated cation channels, and PDEs. cGMP binding activates PKG, which phosphorylates serines and threonines on many cellular proteins, frequently resulting in changes in activity or function, subcellular localization, or regulatory features. The proteins that are so modified by PKG commonly regulate calcium homeostasis, calcium sensitivity of cellular proteins, platelet activation and adhesion, smooth muscle contraction, cardiac function, gene expression, feedback of the NO-signaling pathway, and other processes. Current therapies that have successfully targeted the NO-signaling pathway include nitrovasodilators (nitroglycerin), PDE5 inhibitors [sildenafil (Viagra and Revatio), vardenafil (Levitra), and tadalafil (Cialis and Adcirca)] for treatment of a number of vascular diseases including angina pectoris, erectile dysfunction, and pulmonary hypertension; the PDE3 inhibitors [cilostazol (Pletal) and milrinone (Primacor)] are used for treatment of intermittent claudication and acute heart failure, respectively. Potential for use of these medications in the treatment of other maladies continues to emerge.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro.

              The neocortex is the most common target of subdural electrotherapy and noninvasive brain stimulation modalities, including transcranial magnetic stimulation (TMS) and transcranial current simulation (TCS). Specific neuronal elements targeted by cortical stimulation are considered to underlie therapeutic effects, but the exact cell type(s) affected by these methods remains poorly understood. We determined whether neuronal morphology or cell type predicted responses to subthreshold and suprathreshold uniform electric fields. We characterized the effects of subthreshold and suprathreshold electrical stimulation on identified cortical neurons in vitro. Uniform electric fields were applied to rat motor cortex brain slices, while recording from interneurons and pyramidal cells across cortical layers, using a whole-cell patch clamp. Neuron morphology was reconstructed after intracellular dialysis of biocytin. Based solely on volume-weighted morphology, we developed a parsimonious model of neuronal soma polarization by subthreshold electric fields. We found that neuronal morphology correlated with somatic subthreshold polarization. Based on neuronal morphology, we predict layer V pyramidal neuronal soma to be individually the most sensitive to polarization by optimally oriented subthreshold fields. Suprathreshold electric field action potential threshold was shown to reflect both direct cell polarization and synaptic (network) activation. Layer V/VI neuron absolute electric field action potential thresholds were lower than layer II/III pyramidal neurons and interneurons. Compared with somatic current injection, electric fields promoted burst firing and modulated action potential firing times. We present experimental data indicating that cortical neuron morphology relative to electric fields and cortical cell type are factors in determining sensitivity to sub- and supra-threshold brain stimulation.
                Bookmark

                Author and article information

                Journal
                J Cell Mol Med
                J. Cell. Mol. Med
                jcmm
                Journal of Cellular and Molecular Medicine
                Blackwell Publishing Ltd
                1582-1838
                1582-4934
                August 2013
                26 June 2013
                : 17
                : 8
                : 958-965
                Affiliations
                Professor Emeritus of Biochemistry and Basic Medical Sciences, Washington State University Portland, OR, USA
                Author notes
                *Correspondence to: Martin L. PALL, Ph.D., Professor Emeritus of Biochemistry and Basic Medical Sciences, Washington State University, 638 NE 41st Ave., Portland, OR 97232 USA Tel: +01-503-232-3883 E-mail: martin_pall@ 123456wsu.edu
                Article
                10.1111/jcmm.12088
                3780531
                23802593
                a1178b61-c50c-4bd9-96cf-ea9c7229207b
                © 2013 The Author. Journal of Cellular and Molecular Medicine Published by Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd

                Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation.

                History
                : 08 January 2013
                : 20 May 2013
                Categories
                Reviews

                Molecular medicine
                intracellular ca2+,voltage-gated calcium channels,low frequency electromagnetic field exposure,nitric oxide,oxidative stress,calcium channel blockers

                Comments

                Comment on this article