5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Weight-based determination of fluid overload status and mortality in pediatric intensive care unit patients requiring continuous renal replacement therapy.

      Intensive Care Medicine
      Acute Kidney Injury, mortality, physiopathology, therapy, Adolescent, Area Under Curve, Body Weight, Child, Child, Preschool, Female, Humans, Infant, Intensive Care Units, Pediatric, Male, ROC Curve, Renal Replacement Therapy, methods, Retrospective Studies, Risk Factors, Statistics, Nonparametric, Survival Rate, Water-Electrolyte Balance, physiology

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In pediatric intensive care unit (PICU) patients, fluid overload (FO) at initiation of continuous renal replacement therapy (CRRT) has been reported to be an independent risk factor for mortality. Previous studies have calculated FO based on daily fluid balance during ICU admission, which is labor intensive and error prone. We hypothesized that a weight-based definition of FO at CRRT initiation would correlate with the fluid balance method and prove predictive of outcome. This is a retrospective single-center review of PICU patients requiring CRRT from July 2006 through February 2010 (n = 113). We compared the degree of FO at CRRT initiation using the standard fluid balance method versus methods based on patient weight changes assessed by both univariate and multivariate analyses. The degree of fluid overload at CRRT initiation was significantly greater in nonsurvivors, irrespective of which method was used. The univariate odds ratio for PICU mortality per 1% increase in FO was 1.056 [95% confidence interval (CI) 1.025, 1.087] by the fluid balance method, 1.044 (95% CI 1.019, 1.069) by the weight-based method using PICU admission weight, and 1.045 (95% CI 1.022, 1.07) by the weight-based method using hospital admission weight. On multivariate analyses, all three methods approached significance in predicting PICU survival. Our findings suggest that weight-based definitions of FO are useful in defining FO at CRRT initiation and are associated with increased mortality in a broad PICU patient population. This study provides evidence for a more practical weight-based definition of FO that can be used at the bedside.

          Related collections

          Author and article information

          Comments

          Comment on this article