5
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Troubling travellers: are ecologically harmful alien species associated with particular introduction pathways?

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 31

          • Record: found
          • Abstract: not found
          • Article: not found

          Ecological effects of invasive alien insects

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The complex network of global cargo ship movements.

            Transportation networks play a crucial role in human mobility, the exchange of goods and the spread of invasive species. With 90 per cent of world trade carried by sea, the global network of merchant ships provides one of the most important modes of transportation. Here, we use information about the itineraries of 16 363 cargo ships during the year 2007 to construct a network of links between ports. We show that the network has several features that set it apart from other transportation networks. In particular, most ships can be classified into three categories: bulk dry carriers, container ships and oil tankers. These three categories do not only differ in the ships' physical characteristics, but also in their mobility patterns and networks. Container ships follow regularly repeating paths whereas bulk dry carriers and oil tankers move less predictably between ports. The network of all ship movements possesses a heavy-tailed distribution for the connectivity of ports and for the loads transported on the links with systematic differences between ship types. The data analysed in this paper improve current assumptions based on gravity models of ship movements, an important step towards understanding patterns of global trade and bioinvasion.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Invasion success of vertebrates in Europe and North America.

              Species become invasive if they (i) are introduced to a new range, (ii) establish themselves, and (iii) spread. To address the global problems caused by invasive species, several studies investigated steps ii and iii of this invasion process. However, only one previous study looked at step i and examined the proportion of species that have been introduced beyond their native range. We extend this research by investigating all three steps for all freshwater fish, mammals, and birds native to Europe or North America. A higher proportion of European species entered North America than vice versa. However, the introduction rate from Europe to North America peaked in the late 19th century, whereas it is still rising in the other direction. There is no clear difference in invasion success between the two directions, so neither the imperialism dogma (that Eurasian species are exceptionally successful invaders) is supported, nor is the contradictory hypothesis that North America offers more biotic resistance to invaders than Europe because of its less disturbed and richer biota. Our results do not support the tens rule either: that approximately 10% of all introduced species establish themselves and that approximately 10% of established species spread. We find a success of approximately 50% at each step. In comparison, only approximately 5% of native vertebrates were introduced in either direction. These figures show that, once a vertebrate is introduced, it has a high potential to become invasive. Thus, it is crucial to minimize the number of species introductions to effectively control invasive vertebrates.
                Bookmark

                Author and article information

                Journal
                NeoBiota
                NB
                Pensoft Publishers
                1314-2488
                1619-0033
                January 04 2017
                January 04 2017
                : 32
                : 1-20
                Article
                10.3897/neobiota.32.10199
                © 2017

                Comments

                Comment on this article