19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      NAD +-SIRT1 control of H3K4 trimethylation through circadian deacetylation of MLL1

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The circadian clock controls the transcription of hundred genes through specific chromatin remodeling events. The histone methyltransferase Mixed-Lineage Leukemia 1 (MLL1) coordinates recruitment of CLOCK–BMAL1 activator complexes to chromatin, an event associated to cyclic H3K4 tri-methylation at circadian promoters. Remarkably, in mouse liver circadian H3K4me3 is modulated by SIRT1, a NAD + dependent deacetylase involved in clock control. We show that mammalian MLL1 is acetylated at two conserved residues, K1130 and K1133. Notably, MLL1 acetylation is cyclic, controlled by the clock and by SIRT1, and impacts the methyltransferase activity of MLL1. Moreover, H3K4 methylation at clock-controlled gene promoters is influenced by pharmacological or genetic inactivation of SIRT1. Finally, MLL1 acetylation and H3K4me3 levels at circadian gene promoters depend on NAD + circadian levels. These findings reveal a previously unappreciated regulatory pathway between energy metabolism and histone methylation.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Transcriptional architecture and chromatin landscape of the core circadian clock in mammals.

          The mammalian circadian clock involves a transcriptional feed back loop in which CLOCK and BMAL1 activate the Period and Cryptochrome genes, which then feedback and repress their own transcription. We have interrogated the transcriptional architecture of the circadian transcriptional regulatory loop on a genome scale in mouse liver and find a stereotyped, time-dependent pattern of transcription factor binding, RNA polymerase II (RNAPII) recruitment, RNA expression, and chromatin states. We find that the circadian transcriptional cycle of the clock consists of three distinct phases: a poised state, a coordinated de novo transcriptional activation state, and a repressed state. Only 22% of messenger RNA (mRNA) cycling genes are driven by de novo transcription, suggesting that both transcriptional and posttranscriptional mechanisms underlie the mammalian circadian clock. We also find that circadian modulation of RNAPII recruitment and chromatin remodeling occurs on a genome-wide scale far greater than that seen previously by gene expression profiling.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Resetting of circadian time in peripheral tissues by glucocorticoid signaling.

            In mammals, circadian oscillators reside not only in the suprachiasmatic nucleus of the brain, which harbors the central pacemaker, but also in most peripheral tissues. Here, we show that the glucocorticoid hormone analog dexamethasone induces circadian gene expression in cultured rat-1 fibroblasts and transiently changes the phase of circadian gene expression in liver, kidney, and heart. However, dexamethasone does not affect cyclic gene expression in neurons of the suprachiasmatic nucleus. This enabled us to establish an apparent phase-shift response curve specifically for peripheral clocks in intact animals. In contrast to the central clock, circadian oscillators in peripheral tissues appear to remain responsive to phase resetting throughout the day.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Posttranslational mechanisms regulate the mammalian circadian clock.

              We have examined posttranslational regulation of clock proteins in mouse liver in vivo. The mouse PERIOD proteins (mPER1 and mPER2), CLOCK, and BMAL1 undergo robust circadian changes in phosphorylation. These proteins, the cryptochromes (mCRY1 and mCRY2), and casein kinase I epsilon (CKIepsilon) form multimeric complexes that are bound to DNA during negative transcriptional feedback. CLOCK:BMAL1 heterodimers remain bound to DNA over the circadian cycle. The temporal increase in mPER abundance controls the negative feedback interactions. Analysis of clock proteins in mCRY-deficient mice shows that the mCRYs are necessary for stabilizing phosphorylated mPER2 and for the nuclear accumulation of mPER1, mPER2, and CKIepsilon. We also provide in vivo evidence that casein kinase I delta is a second clock relevant kinase.
                Bookmark

                Author and article information

                Journal
                101186374
                31761
                Nat Struct Mol Biol
                Nat. Struct. Mol. Biol.
                Nature structural & molecular biology
                1545-9993
                1545-9985
                22 September 2015
                09 March 2015
                April 2015
                29 January 2016
                : 22
                : 4
                : 312-318
                Affiliations
                Center for Epigenetics and Metabolism, U904 INSERM, Department of Biological Chemistry, School of Medicine, University of California Irvine, CA, USA
                Author notes
                [2]

                Present address: Department of Stem Cell Biology and Medicine, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan

                Article
                NIHMS664249
                10.1038/nsmb.2990
                4732879
                25751424
                a12e0150-81aa-46b5-98d5-991bc9436a84

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Molecular biology
                Molecular biology

                Comments

                Comment on this article