42
views
0
recommends
+1 Recommend
2 collections
    0
    shares

          The flagship journal of the Society for Endocrinology. Learn more

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Functional characterization of a CDKN1B mutation in a Sardinian kindred with multiple endocrine neoplasia type 4

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Inactivating germline mutations of the CDKN1B gene encoding the nuclear cyclin-dependent kinase inhibitor P27 kip1 protein have been reported in patients with multiple endocrine neoplasia type 4 (MEN4), a MEN1-like phenotype without MEN1 mutations. The aim of this study was to characterize in vitro the germline CDKN1B mutation c.374_375delCT (S125X) we detected in a patient with MEN4. The proband was affected by primary hyperparathyroidism due to multiglandular parathyroid involvement and gastro–entero–pancreatic tumors. We carried out subcellular localization experiments by transfection with plasmid vectors expressing the WT or mutant CDKN1B cDNA into the eukaryotic human cervix adenocarcinoma (HeLa) and GH3 cell lines. Results from western blotting studies indicated that fusion proteins were expressed at equal levels. The mutated protein was shorter compared with the WT protein and lacked the highly conserved C-terminal domain, which includes the bipartite nuclear localization signal at amino acids 152/153 and 166/168. In HeLa and GH3 cells, WT P27 localized in the nucleus, whereas the P27_S125X protein was retained in the cytoplasm, predicting the loss of tumor-suppressive function. The proband's tumoral parathyroid tissue did not show allelic loss, because both WT and mutant alleles were determined to be present by sequencing the somatic DNA. Immunohistochemistry revealed a complete loss of nuclear expression of P27 in a parathyroid adenoma, which had been removed by the second surgery in the patient. In conclusion, our results confirm the pathogenic role of the c.374_375delCT CDKN1B germline mutation in a patient with MEN4.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Multiple endocrine neoplasia type 1 (MEN1): analysis of 1336 mutations reported in the first decade following identification of the gene.

          Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant disorder characterized by the occurrence of tumors of the parathyroids, pancreas, and anterior pituitary. The MEN1 gene, which was identified in 1997, consists of 10 exons that encode a 610-amino acid protein referred to as menin. Menin is predominantly a nuclear protein that has roles in transcriptional regulation, genome stability, cell division, and proliferation. Germline mutations usually result in MEN1 or occasionally in an allelic variant referred to as familial isolated hyperparathyroidism (FIHP). MEN1 tumors frequently have loss of heterozygosity (LOH) of the MEN1 locus, which is consistent with a tumor suppressor role of MEN1. Furthermore, somatic abnormalities of MEN1 have been reported in MEN1 and non-MEN1 endocrine tumors. The clinical aspects and molecular genetics of MEN1 are reviewed together with the reported 1,336 mutations. The majority (>70%) of these mutations are predicted to lead to truncated forms of menin. The mutations are scattered throughout the>9-kb genomic sequence of the MEN1 gene. Four, which consist of c.249_252delGTCT (deletion at codons 83-84), c.1546_1547insC (insertion at codon 516), c.1378C>T (Arg460Ter), and c.628_631delACAG (deletion at codons 210-211) have been reported to occur frequently in 4.5%, 2.7%, 2.6%, and 2.5% of families, respectively. However, a comparison of the clinical features in patients and their families with the same mutations reveals an absence of phenotype-genotype correlations. The majority of MEN1 mutations are likely to disrupt the interactions of menin with other proteins and thereby alter critical events in cell cycle regulation and proliferation. (c) 2007 Wiley-Liss, Inc.
            • Record: found
            • Abstract: found
            • Article: not found

            Germ-line mutations in p27Kip1 cause a multiple endocrine neoplasia syndrome in rats and humans.

            MENX is a recessive multiple endocrine neoplasia-like syndrome in the rat. The tumor spectrum in MENX overlaps those of human multiple endocrine neoplasia (MEN) types 1 and 2. We mapped the MenX locus to the distal part of rat chromosome 4, excluding the homologs of the genes responsible for the MEN syndromes (RET and MEN1) and syndromes with an endocrine tumor component (VHL and NF1). We report the fine mapping of the disease locus and the identification of a homozygous frameshift mutation in Cdkn1b, encoding the cyclin-dependent kinase inhibitor p27(Kip1). As a consequence of the mutation, MENX-affected rats show dramatic reduction in p27(Kip1) protein. We have identified a germ-line nonsense mutation in the human CDKN1B gene in a MEN1 mutation-negative patient presenting with pituitary and parathyroid tumors. Expanded pedigree analysis shows that the mutation is associated with the development of an MEN1-like phenotype in multiple generations. Our findings demonstrate that germ-line mutations in p27(Kip1) can predispose to the development of multiple endocrine tumors in both rats and humans.
              • Record: found
              • Abstract: found
              • Article: not found

              The murine gene p27Kip1 is haplo-insufficient for tumour suppression.

              p27Kip is a candidate human tumour-suppressor protein, because it is able to inhibit cyclin-dependent kinases and block cell proliferation. Abnormally low levels of the p27 protein are frequently found in human carcinomas, and these low levels correlate directly with both histological aggressiveness and patient mortality. However, it has not been possible to establish a causal link between p27 and tumour suppression, because only rare instances of homozygous inactivating mutations of the p27 gene have been found in human tumours. Thus, p27Kip1 does not fulfil Knudson's 'two-mutation' criterion for a tumour-suppressor gene. Here we show that both p27 nullizygous and p27 heterozygous mice are predisposed to tumours in multiple tissues when challenged with gamma-irradiation or a chemical carcinogen. Therefore p27 is a multiple-tissue tumour suppressor in mice. Molecular analyses of tumours in p27 heterozygous mice show that the remaining wild-type allele is neither mutated nor silenced. Hence, p27 is haplo-insufficient for tumour suppression. The assumption that null mutations in tumour-suppressor genes are recessive excludes those genes that exhibit haplo-insufficiency.

                Author and article information

                Journal
                Endocr Connect
                Endocr Connect
                EC
                Endocrine Connections
                Bioscientifica Ltd (Bristol )
                2049-3614
                17 December 2014
                01 March 2015
                : 4
                : 1
                : 1-8
                Affiliations
                [1 ] Endocrine Unit 2, Department of Clinical and Experimental Medicine , University Hospital of Pisa, University of Pisa , Via Paradisa 2, Pisa, Italy
                [2 ] Endocrinology Unit, Department of Medical Sciences ‘M Aresu’ , University of Cagliari , Cagliari, Italy
                [3 ] Institute of Pathology, Helmholtz Zentrum Muenchen , Neuherberg, Germany
                [4 ] Department of Surgical Medical and Molecular Pathology and Critical Area , University of Pisa , Pisa, Italy
                Author notes
                Correspondence should be addressed to F Cetani Email: cetani@ 123456endoc.med.unipi.it
                Article
                EC140116
                10.1530/EC-14-0116
                5713151
                25416039
                a15ee796-d74b-47c1-ae70-a93e22707c55
                © 2015 The authors

                This work is licensed under a Creative Commons Attribution 3.0 Unported License

                History
                : 29 October 2014
                : 21 November 2014
                Categories
                Research

                primary hyperparathyroidism,parathyroid tumorigenesis,men1,p27

                Comments

                Comment on this article

                Related Documents Log