21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Role of TRP Channels in the Metastatic Cascade

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A dysregulated cellular Ca 2+ homeostasis is involved in multiple pathologies including cancer. Changes in Ca 2+ signaling caused by altered fluxes through ion channels and transporters (the transportome) are involved in all steps of the metastatic cascade. Cancer cells thereby “re-program” and “misuse” the cellular transportome to regulate proliferation, apoptosis, metabolism, growth factor signaling, migration and invasion. Cancer cells use their transportome to cope with diverse environmental challenges during the metastatic cascade, like hypoxic, acidic and mechanical cues. Hence, ion channels and transporters are key modulators of cancer progression. This review focuses on the role of transient receptor potential (TRP) channels in the metastatic cascade. After briefly introducing the role of the transportome in cancer, we discuss TRP channel functions in cancer cell migration. We highlight the role of TRP channels in sensing and transmitting cues from the tumor microenvironment and discuss their role in cancer cell invasion. We identify open questions concerning the role of TRP channels in circulating tumor cells and in the processes of intra- and extravasation of tumor cells. We emphasize the importance of TRP channels in different steps of cancer metastasis and propose cancer-specific TRP channel blockade as a therapeutic option in cancer treatment.

          Related collections

          Most cited references188

          • Record: found
          • Abstract: found
          • Article: not found

          Tensional homeostasis and the malignant phenotype.

          Tumors are stiffer than normal tissue, and tumors have altered integrins. Because integrins are mechanotransducers that regulate cell fate, we asked whether tissue stiffness could promote malignant behavior by modulating integrins. We found that tumors are rigid because they have a stiff stroma and elevated Rho-dependent cytoskeletal tension that drives focal adhesions, disrupts adherens junctions, perturbs tissue polarity, enhances growth, and hinders lumen formation. Matrix stiffness perturbs epithelial morphogenesis by clustering integrins to enhance ERK activation and increase ROCK-generated contractility and focal adhesions. Contractile, EGF-transformed epithelia with elevated ERK and Rho activity could be phenotypically reverted to tissues lacking focal adhesions if Rho-generated contractility or ERK activity was decreased. Thus, ERK and Rho constitute part of an integrated mechanoregulatory circuit linking matrix stiffness to cytoskeletal tension through integrins to regulate tissue phenotype.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration.

            Tumors are stiff and data suggest that the extracellular matrix stiffening that correlates with experimental mammary malignancy drives tumor invasion and metastasis. Nevertheless, the relationship between tissue and extracellular matrix stiffness and human breast cancer progression and aggression remains unclear. We undertook a biophysical and biochemical assessment of stromal-epithelial interactions in noninvasive, invasive and normal adjacent human breast tissue and in breast cancers of increasingly aggressive subtype. Our analysis revealed that human breast cancer transformation is accompanied by an incremental increase in collagen deposition and a progressive linearization and thickening of interstitial collagen. The linearization of collagen was visualized as an overall increase in tissue birefringence and was most striking at the invasive front of the tumor where the stiffness of the stroma and cellular mechanosignaling were the highest. Amongst breast cancer subtypes we found that the stroma at the invasive region of the more aggressive Basal-like and Her2 tumor subtypes was the most heterogeneous and the stiffest when compared to the less aggressive luminal A and B subtypes. Intriguingly, we quantified the greatest number of infiltrating macrophages and the highest level of TGF beta signaling within the cells at the invasive front. We also established that stroma stiffness and the level of cellular TGF beta signaling positively correlated with each other and with the number of infiltrating tumor-activated macrophages, which was highest in the more aggressive tumor subtypes. These findings indicate that human breast cancer progression and aggression, collagen linearization and stromal stiffening are linked and implicate tissue inflammation and TGF beta.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Targeting both tumour-associated CXCR2 + neutrophils and CCR2 + macrophages disrupts myeloid recruitment and improves chemotherapeutic responses in pancreatic ductal adenocarcinoma

              Objective Chemokine pathways are co-opted by pancreatic adenocarcinoma (PDAC) to facilitate myeloid cell recruitment from the bone marrow to establish an immunosuppressive tumour microenvironment (TME). Targeting tumour-associated CXCR2+neutrophils (TAN) or tumour-associated CCR2+ macrophages (TAM) alone improves antitumour immunity in preclinical models. However, a compensatory influx of an alternative myeloid subset may result in a persistent immunosuppressive TME and promote therapeutic resistance. Here, we show CCR2 and CXCR2 combined blockade reduces total tumour-infiltrating myeloids, promoting a more robust antitumour immune response in PDAC compared with either strategy alone. Methods Blood, bone marrow and tumours were analysed from PDAC patients and controls. Treatment response and correlative studies were performed in mice with established orthotopic PDAC tumours treated with a small molecule CCR2 inhibitor (CCR2i) and CXCR2 inhibitor (CXCR2i), alone and in combination with chemotherapy. Results A systemic increase in CXCR2+ TAN correlates with poor prognosis in PDAC, and patients receiving CCR2i showed increased tumour-infiltrating CXCR2+ TAN following treatment. In an orthotopic PDAC model, CXCR2 blockade prevented neutrophil mobilisation from the circulation and augmented chemotherapeutic efficacy. However, depletion of either CXCR2+ TAN or CCR2+ TAM resulted in a compensatory response of the alternative myeloid subset, recapitulating human disease. This was overcome by combined CCR2i and CXCR2i, which augmented antitumour immunity and improved response to FOLFIRINOX chemotherapy. Conclusion Dual targeting of CCR2+ TAM and CXCR2+ TAN improves antitumour immunity and chemotherapeutic response in PDAC compared with either strategy alone.
                Bookmark

                Author and article information

                Journal
                Pharmaceuticals (Basel)
                Pharmaceuticals (Basel)
                pharmaceuticals
                Pharmaceuticals
                MDPI
                1424-8247
                17 May 2018
                June 2018
                : 11
                : 2
                : 48
                Affiliations
                Institut für Physiologie II, Robert-Koch-Str. 27b, 48149 Münster, Germany; ebulk@ 123456uni-muenster.de (E.B.); pethoe@ 123456uni-muenster.de (Z.P.); aschwab@ 123456uni-muenster.de (A.S.)
                Author notes
                [* ]Correspondence: b_fels01@ 123456uni-muenster.de ; Tel.: +49-251-83-55336
                Article
                pharmaceuticals-11-00048
                10.3390/ph11020048
                6027473
                29772843
                a161d895-d84c-411e-b78f-8c9f399943ab
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 20 April 2018
                : 16 May 2018
                Categories
                Review

                metastatic cascade,trp channels,tumor microenvironment,transportome

                Comments

                Comment on this article