15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Methylthioadenosine phosphorylase (MTAP)-deficient T-cell ALL xenografts are sensitive to pralatrexate and 6-thioguanine alone and in combination

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          To investigate the effectiveness of a combination of 6-thioguanine (6-TG) and pralatrexate (PDX) in methylthioadenosine phosphorylase (MTAP)-deficient T-cell acute lymphoblastic leukemia (T-cell ALL).

          Methods

          CCRF-CEM (MTAP −/−) and Molt4 (MTAP +/+) T-cell ALL cell lines were treated with 6-TG or PDX and evaluated for efficacy 72 h later. NOD/SCID gamma mice bearing CEM or Molt4 xenografts were treated with 6-TG and PDX alone or in combination to evaluate antitumor effects.

          Results

          CEM cells were more sensitive to 6-TG and PDX in vitro than Molt4. In vivo, CEM cells were very sensitive to PDX and 6-TG, whereas Molt4 cells were highly resistant to 6-TG. A well-tolerated combination of PDX and 6-TG achieved significant tumor regression in CEM xenografts.

          Conclusions

          The loss of MTAP expression may be therapeutically exploited in T-cell ALL. The combination of 6-TG and PDX, with the inclusion of leucovorin rescue, allows for a safe and effective regimen in MTAP-deficient T-cell ALL.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Review of alterations of the cyclin-dependent kinase inhibitor INK4 family genes p15, p16, p18 and p19 in human leukemia-lymphoma cells.

          H Drexler (1998)
          The cyclin-dependent kinase inhibitors known as p15, p16, p18 and p19 have been suggested as candidates for tumor suppressor genes. The main genetic alterations are deletions (bi- or monoallelic) or 5' CpG island methylation of p15 and p16; very few cases or cell lines had p18 or p19 deletions or hypermethylation. Hypermethylation and homozygous deletions of tumor suppressor genes establish a new paradigm of inactivation by lack of expression, in contrast to the previously identified tumor suppressors which are predominantly inactivated by point mutations followed by loss of the wild-type allele. Here, the literature data on alterations of this gene family in more than 4700 primary cases of leukemia or lymphoma and some 320 continuous leukemia-lymphoma cell lines are summarized. Among hematopoietic malignancies, the highest frequencies of p15del and p16del were seen in acute lymphoblastic leukemia (ALL) (>30%) with striking rates in T-ALL (>50%), but also high rates in B cell precursor (BCP)-ALL (>20%); the rates of deletions in chronic lymphoid leukemia (CLL), multiple myeloma, acute and chronic myeloid leukemia (AML and CML), and myelodysplastic syndromes (MDS) were rather low, only some B cell and T cell lymphomas showed increased frequencies. Results are quite different with regard to the second mode of inactivation, hypermethylation of the promoter region. Here, p15 is most often inactivated, at particularly high frequencies in the disorders lacking any p15/p16 deletions: 40-80% p15met in AML, MDS and multiple myeloma. Also p15met rates in BCP- and T-ALL cases were high (c. 40%). There is controversy concerning the prognostic impact of p15 and p16 aberrations with some studies describing a significant correlation between inactivation of these genes and poor prognosis, while most others did not detect any prognostic relevance, at least in pediatric ALL; there may be a worse prognosis for adults with B or T cell lymphomas. Despite the small number of cases studied, paired sequential analyses suggested that disease progression is associated with loss of p15/p16 activity in a certain percentage of adult patients. p15del/p16del and p15met/p16met were also detected in the large panel of leukemia-lymphoma cell lines studied. In general, the results in cell lines reproduce the data seen in primary cells with the important difference that the rates of p15/p16 inactivation are clearly higher in the cultured cells compared with the freshly explanted cells. Retrovirus- or electroporation-mediated ectopic gene transfer of p16 wild-type into p16-deficient cell lines led to growth inhibition, arrest in G1 (without apoptosis) and occasionally to differentiation, suggesting that the malignant phenotype of p16-/- cell lines can, at least partially, be reversed by restoring p16 gene expression. A striking inverse correlation between the absence of p16 (due to deletion) and presence of wild-type retinoblastoma gene was observed in cell lines confirming a common growth suppressor pathway; no comparable relationship of p16 inactivation with p53 was detected. Paired analysis of cell lines and corresponding primary cell material showed that in all instances tested both populations carried the same gene configuration of p15 and p16. Thus, p15del or p16del did not occur during establishment of the cell lines or during prolonged culture. It is likely that p15 or p16 deletions already acquired in vivo provide a dramatic growth advantage for the immortalization process in vitro, thus increasing the success rate for cell line establishment which is commonly extremely difficult. In conclusion, the present review suggests an involvement of the p15 and p16 tumor suppressor genes in leukemo- and lymphomagenesis. Future studies will determine their exact role in the development and progression of hematopoietic neoplasms. These genes may represent interesting targets for new therapeutic strategies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            New therapeutic strategies for the treatment of acute lymphoblastic leukaemia.

            Although contemporary treatments cure more than 80% of children with acute lymphoblastic leukaemia (ALL), some patients require intensive treatment and many patients still develop serious acute and late complications owing to the side effects of the treatments. Furthermore, the survival rate for adults with ALL remains below 40%. Therefore, new treatment strategies are needed to improve not only the cure rate but also the quality of life of these patients. Here, we discuss emerging new treatments that might improve the clinical outcome of patients with ALL. These include new formulations of existing chemotherapeutic agents, new antimetabolites and nucleoside analogues, monoclonal antibodies against leukaemia-associated antigens, and molecular therapies that target genetic abnormalities of the leukaemic cells and their affected signalling pathways.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effectiveness of high-dose methotrexate in T-cell lymphoblastic leukemia and advanced-stage lymphoblastic lymphoma: a randomized study by the Children's Oncology Group (POG 9404).

              The Pediatric Oncology Group (POG) phase 3 trial 9404 was designed to determine the effectiveness of high-dose methotrexate (HDM) when added to multi-agent chemotherapy based on the Dana-Farber backbone. Children with T-cell acute lymphoblastic leukemia (T-ALL) or advanced lymphoblastic lymphoma (T-NHL) were randomized at diagnosis to receive/not receive HDM (5 g/m² as a 24-hour infusion) at weeks 4, 7, 10, and 13. Between 1996 and 2000, 436 patients were enrolled in the methotrexate randomization. Five-year and 10-year event-free survival (EFS) was 80.2% ± 2.8% and 78.1% ± 4.3% for HDM (n = 219) versus 73.6% ± 3.1% and 72.6% ± 5.0% for no HDM (n = 217; P = .17). For T-ALL, 5-year and 10-year EFS was significantly better with HDM (n = 148, 5 years: 79.5% ± 3.4%, 10 years: 77.3% ± 5.3%) versus no HDM (n = 151, 5 years: 67.5% ± 3.9%, 10 years: 66.0% ± 6.6%; P = .047). The difference in EFS between HDM and no HDM was not significant for T-NHL patients (n = 71, 5 years: 81.7% ± 4.9%, 10 years: 79.9% ± 7.5% vs n = 66, 5 years: 87.8% ± 4.2%, 10 years: 87.8% ± 6.4%; P = .38). The frequency of mucositis was significantly higher in patients treated with HDM (P = .003). The results support adding HDM to the treatment of children with T-ALL, but not with NHL, despite the increased risk of mucositis.
                Bookmark

                Author and article information

                Contributors
                732-235-8510 , bertinoj@cinj.rutgers.edu
                Journal
                Cancer Chemother Pharmacol
                Cancer Chemother. Pharmacol
                Cancer Chemotherapy and Pharmacology
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                0344-5704
                1432-0843
                28 April 2015
                28 April 2015
                2015
                : 75
                : 6
                : 1247-1252
                Affiliations
                Departments of Pharmacology and Medicine, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ USA
                Article
                2747
                10.1007/s00280-015-2747-2
                4441744
                25917288
                a16b6160-bba4-4413-bc56-c48e7ec6d982
                © The Author(s) 2015

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 15 December 2014
                : 10 April 2015
                Categories
                Original Article
                Custom metadata
                © Springer-Verlag Berlin Heidelberg 2015

                Oncology & Radiotherapy
                t-cell acute lymphoblastic leukemia,methylthioadenosine phosphorylase,6-thioguanine,pralatrexate,antifolate

                Comments

                Comment on this article