2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Characterization of the nuclear and nucleolar localization signals of bovine herpesvirus-1 infected cell protein 27

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bovine herpesvirus-1 infected cell protein 27 (BICP27) was detected predominantly in the nucleolus. The open reading frame of BICP27 was fused with the enhanced yellow fluorescent protein (EYFP) gene to investigate its subcellular localization in live cells and BICP27 was able to direct monomeric, dimeric or trimeric EYFP exclusively to the nucleolus. By constructing a series of deletion mutants, the putative nuclear localization signal (NLS) and nucleolar localization signal (NoLS) were mapped to 81RRAR 84 and 86RPRRPRRRPRRR 97 respectively. Specific deletion of the putative NLS, NoLS or both abrogated nuclear localization, nucleolar localization or both respectively. Furthermore, NLS was able to direct trimeric EYFP predominantly to the nucleus but excluded from the nucleolus, whereas NoLS targeted trimeric EYFP primarily to the nucleus, and enriched in the nucleolus with faint staining in the cytoplasm. NLS + NoLS directed trimeric EYFP predominantly to the nucleolus with faint staining in the nucleus. Moreover, deletion of NLS + NoLS abolished the transactivating activity of BICP27 on gC promoter, whereas deletion of either NLS or NoLS did not. The study demonstrated that BICP27 is a nucleolar protein, adding BICP27 to the growing list of transactivators which localize to the nucleolus.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Nucleocytoplasmic transport.

          Active transport of proteins and RNAs between the nucleus and cytoplasm is a major process in eukaryotic cells. Recently, factors that recognize transport substrates and mediate nuclear import or export have been characterized, revealing interactions that target substrates to the nuclear pore complexes, through which translocation occurs. Translocation requires energy, and for the import process this energy is at least partly consumed by the action of the small guanosine triphosphatase Ran. In the first half of the review, some of the well-established general background information on nucleocytoplasmic transport is discussed. The second half describes recent information on the mechanistic details of nuclear import and export as well as major unresolved issues such as how directionality is conferred on either import or export. The whole review is slanted toward discussion of metazoan cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            To be or not to be in the nucleolus.

            Compartmentalization has long been known to have a key role in regulation of cellular processes. By keeping enzymes and regulatory complexes in compartments where the delivery of substrate or exit of product is controlled, competing reactions can occur simultaneously in different parts of the cell. Moreover, spatial confinement facilitates the working of molecules participating in reaction chains and is crucial for coupling unfavourable with energetically favourable chemical reactions. Although in many cases intracellular compartmentalization relies on boundaries imposed by membranes, several non-membrane-bounded compartments exist in eukaryotic cells. One of these, the nucleolus, has recently attracted much attention. The emerging view is that molecular confinement in the nucleolus actively contributes to the control of cellular survival and proliferation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The localization of porcine reproductive and respiratory syndrome virus nucleocapsid protein to the nucleolus of infected cells and identification of a potential nucleolar localization signal sequence.

              The nucleocapsid (N) protein of porcine reproductive and respiratory syndrome virus (PRRSV) possesses two regions in the N-terminal half of the protein that are enriched in basic amino acids. Presumably, these basic regions are important for packaging the RNA genome within the nucleocapsid of the virus. The PSORT computer program identified the same regions as nuclear localization signal (NLS) sequence motifs. N protein localization to the nucleus of infected MARC-145 and porcine pulmonary macrophages was observed following staining with SDOW-17 and SR-30 anti-N monoclonal antibodies. Furthermore, the co-localization of SR-30 antibody with human ANA-N autoimmune serum identified the nucleolus as the primary site for N protein localization within the nucleus. The localization of the N protein in the absence of infection was studied by following fluorescence in MARC-145 cells transfected with a plasmid, which expressed the nucleocapsid protein fused to an enhanced green fluorescent protein (N-EGFP). Similar to infected cells, N-EGFP localized to the cytoplasm and the nucleolus. Results following the transfection of cells with pEGFP fused to truncated portions of the N gene identified a region containing the second basic stretch of amino acids as the nucleolar localization signal (NoLS) sequence. Another outcome following transfection was the rapid disappearance of cells that expressed high levels of N-EGFP. However, cell death did not correlate with localization of N-EGFP to the nucleolus.
                Bookmark

                Author and article information

                Contributors
                Journal
                Virus Res
                Virus Res
                Virus Research
                Elsevier B.V.
                0168-1702
                1872-7492
                12 August 2009
                November 2009
                12 August 2009
                : 145
                : 2
                : 312-320
                Affiliations
                [a ]State Key Laboratory of Virology, Molecular Virology and Viral Immunology Research Group, Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Xiaohongshan, Wuchang, Wuhan, Hubei 430071, PR China
                [b ]Department of Molecular Medicine, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian 350001, PR China
                Author notes
                [* ]Corresponding author. Tel.: +86 27 8719 8676; fax: +86 27 8719 8676. zheng.alan@ 123456hotmail.com
                [1]

                These authors contributed equally to this study.

                Article
                S0168-1702(09)00260-3
                10.1016/j.virusres.2009.07.024
                7125963
                19682510
                a16d1ece-d683-4d6f-9247-b7c8f909d1cb
                Copyright © 2009 Elsevier B.V. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 17 May 2009
                : 31 July 2009
                : 31 July 2009
                Categories
                Article

                Microbiology & Virology
                nuclear localization signal,nucleolar localization signal,bovine herpesvirus-1,bicp27,transactivation

                Comments

                Comment on this article