Blog
About

6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mixing of spin and orbital angular momenta via second-harmonic generation in plasmonic and dielectric chiral nanostructures

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We present a theoretical study of the characteristics of the nonlinear spin-orbital angular momentum coupling induced by second-harmonic generation in plasmonic and dielectric nanostructures made of centrosymmetric materials. In particular, the connection between the phase singularities and polarization helicities in the longitudinal components of the fundamental and second-harmonic optical fields and the scatterer symmetry properties are discussed. By in-depth comparison between the interaction of structured optical beams with plasmonic and dielectric nanostructures, we have found that all-dielectric and plasmonic nanostructures that exhibit magnetic and electric resonances have comparable second-harmonic conversion efficiency. In addition, mechanisms for second-harmonic enhancement for single and chiral clusters of scatterers are unveiled and the relationships between the content of optical angular momentum of the incident optical beams and the enhancement of nonlinear light scattering is discussed. In particular, we formulate a general angular momenta conservation law for the nonlinear spin-orbital angular momentum interaction, which includes the quasi-angular-momentum of chiral structures with different-order rotational symmetry. As a key conclusion of our study relevant to nanophotonics, we argue that all-dielectric nanostructures provide a more suitable platform to investigate experimentally the nonlinear interaction between spin and orbital angular momenta, as compared to plasmonic ones, chiefly due to their narrower resonance peaks, lower intrinsic losses, and higher sustainable optical power.

          Related collections

          Most cited references 26

          • Record: found
          • Abstract: not found
          • Article: not found

          Optical Constants of the Noble Metals

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Terabit-scale orbital angular momentum mode division multiplexing in fibers.

              Internet data traffic capacity is rapidly reaching limits imposed by optical fiber nonlinear effects. Having almost exhausted available degrees of freedom to orthogonally multiplex data, the possibility is now being explored of using spatial modes of fibers to enhance data capacity. We demonstrate the viability of using the orbital angular momentum (OAM) of light to create orthogonal, spatially distinct streams of data-transmitting channels that are multiplexed in a single fiber. Over 1.1 kilometers of a specially designed optical fiber that minimizes mode coupling, we achieved 400-gigabits-per-second data transmission using four angular momentum modes at a single wavelength, and 1.6 terabits per second using two OAM modes over 10 wavelengths. These demonstrations suggest that OAM could provide an additional degree of freedom for data multiplexing in future fiber networks.
                Bookmark

                Author and article information

                Journal
                2017-04-19
                Article
                1704.07451

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                Custom metadata
                physics.optics

                Optical materials & Optics

                Comments

                Comment on this article