58
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ixodes scapularis saliva mitigates inflammatory cytokine secretion during Anaplasma phagocytophilum stimulation of immune cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Ixodes scapularis saliva enables the transmission of infectious agents to the mammalian host due to its immunomodulatory, anesthetic and anti-coagulant properties. However, how I. scapularis saliva influences host cytokine secretion in the presence of the obligate intracellular rickettsial pathogen Anaplasma phagocytophilum remains elusive.

          Methods

          Bone marrow derived macrophages (BMDMs) were stimulated with pathogen associated molecular patterns (PAMPs) and A. phagocytophilum. Cytokine secretion was measured in the presence and absence of I. scapularis saliva. Human peripheral blood mononuclear cells (PBMCs) were also stimulated with Tumor Necrosis Factor (TNF)-α in the presence and absence of I. scapularis saliva and interleukin (IL)-8 was measured.

          Results

          I. scapularis saliva inhibits inflammatory cytokine secretion by macrophages during stimulation of Toll-like (TLR) and Nod-like receptor (NLR) signaling pathways. The effect of I. scapularis saliva on immune cells is not restricted to murine macrophages because decreasing levels of interleukin (IL)-8 were observed after TNF-α stimulation of human peripheral blood mononuclear cells. I. scapularis saliva also mitigates pro-inflammatory cytokine response by murine macrophages during challenge with A. phagocytophilum.

          Conclusions

          These findings suggest that I. scapularis may inhibit inflammatory cytokine secretion during rickettsial transmission at the vector-host interface.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          The NLRP3 inflammasome: a sensor for metabolic danger?

          Interleukin-1beta (IL-1beta), reactive oxygen species (ROS), and thioredoxin-interacting protein (TXNIP) are all implicated in the pathogenesis of type 2 diabetes mellitus (T2DM). Here we review mechanisms directing IL-1beta production and its pathogenic role in islet dysfunction during chronic hyperglycemia. In doing so, we integrate previously disparate disease-driving mechanisms for IL-1beta, ROS, and TXNIP in T2DM into one unifying model in which the NLRP3 inflammasome plays a central role. The NLRP3 inflammasome also drives IL-1beta maturation and secretion in another disease of metabolic dysregulation, gout. Thus, we propose that the NLRP3 inflammasome contributes to the pathogenesis of T2DM and gout by functioning as a sensor for metabolic stress.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Lyme disease agent exploits a tick protein to infect the mammalian host.

            The Lyme disease agent, Borrelia burgdorferi, is maintained in a tick-mouse cycle. Here we show that B. burgdorferi usurps a tick salivary protein, Salp15 (ref. 3), to facilitate the infection of mice. The level of salp15 expression was selectively enhanced by the presence of B. burgdorferi in Ixodes scapularis, first indicating that spirochaetes might use Salp15 during transmission. Salp15 was then shown to adhere to the spirochaete, both in vitro and in vivo, and specifically interacted with B. burgdorferi outer surface protein C. The binding of Salp15 protected B. burgdorferi from antibody-mediated killing in vitro and provided spirochaetes with a marked advantage when they were inoculated into naive mice or animals previously infected with B. burgdorferi. Moreover, RNA interference-mediated repression of salp15 in I. scapularis drastically reduced the capacity of tick-borne spirochaetes to infect mice. These results show the capacity of a pathogen to use a secreted arthropod protein to help it colonize the mammalian host.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The inflammasomes: mechanisms of activation and function.

              Eicke Latz (2010)
              In response to injurious or infectious agents caspase-1 activating multiprotein complexes, termed inflammasomes, assemble in the cytoplasm of cells. Activated caspase-1 cleaves the proforms of the interleukin-1 cytokine family members leading to their activation and secretion. The IL-1 family cytokines have multiple proinflammatory activities implicating them in the pathogenesis of many inflammatory diseases. While defined ligands have been identified for the NLRP1, IPAF, and AIM2 inflammasomes, little is known about the activation mechanisms of the NLRP3 inflammasome. Numerous different molecular entities, such as various crystals, pore-forming toxins, or extracellular ATP can trigger the NLRP3 inflammasome. Recent work proposes that NLRP3 is activated indirectly by host factors that are generated in response to NLRP3 triggers. Copyright 2009 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Parasit Vectors
                Parasit Vectors
                Parasites & Vectors
                BioMed Central
                1756-3305
                2012
                10 October 2012
                : 5
                : 229
                Affiliations
                [1 ]Center for Disease Vector Research and Department of Entomology, University of California-Riverside, Riverside, CA, 92521, USA
                [2 ]Department of Pathology, Center for Biodefense and Emerging Infectious Diseases and Center for Tropical Diseases, School of Medicine, University of Texas Medical Branch, Galveston, TX, 77555, USA
                [3 ]Department of Medical Sciences, Quinnipiac University, Hamden, CT, 06518, USA
                [4 ]Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Ceske Budejovice, Czech Republic
                Article
                1756-3305-5-229
                10.1186/1756-3305-5-229
                3503595
                23050849
                a17b34d4-6a49-4e42-ab06-317a0a22bfa7
                Copyright ©2012 Chen et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 25 August 2012
                : 6 October 2012
                Categories
                Research

                Parasitology
                anaplasma phagocytophilum,rickettsial agent,saliva,tick,ixodes scapularis
                Parasitology
                anaplasma phagocytophilum, rickettsial agent, saliva, tick, ixodes scapularis

                Comments

                Comment on this article