42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      ROS: Crucial Intermediators in the Pathogenesis of Intervertebral Disc Degeneration

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Excessive reactive oxygen species (ROS) generation in degenerative intervertebral disc (IVD) indicates the contribution of oxidative stress to IVD degeneration (IDD), giving a novel insight into the pathogenesis of IDD. ROS are crucial intermediators in the signaling network of disc cells. They regulate the matrix metabolism, proinflammatory phenotype, apoptosis, autophagy, and senescence of disc cells. Oxidative stress not only reinforces matrix degradation and inflammation, but also promotes the decrease in the number of viable and functional cells in the microenvironment of IVDs. Moreover, ROS modify matrix proteins in IVDs to cause oxidative damage of disc extracellular matrix, impairing the mechanical function of IVDs. Consequently, the progression of IDD is accelerated. Therefore, a therapeutic strategy targeting oxidative stress would provide a novel perspective for IDD treatment. Various antioxidants have been proposed as effective drugs for IDD treatment. Antioxidant supplementation suppresses ROS production in disc cells to promote the matrix synthesis of disc cells and to prevent disc cells from death and senescence in vitro. However, there is not enough in vivo evidence to support the efficiency of antioxidant supplementation to retard the process of IDD. Further investigations based on in vivo and clinical studies will be required to develop effective antioxidative therapies for IDD.

          Related collections

          Most cited references96

          • Record: found
          • Abstract: found
          • Article: not found

          Role of cytokines in intervertebral disc degeneration: pain and disc content.

          Degeneration of the intervertebral discs (IVDs) is a major contributor to back, neck and radicular pain. IVD degeneration is characterized by increases in levels of the proinflammatory cytokines TNF, IL-1α, IL-1β, IL-6 and IL-17 secreted by the IVD cells; these cytokines promote extracellular matrix degradation, chemokine production and changes in IVD cell phenotype. The resulting imbalance in catabolic and anabolic responses leads to the degeneration of IVD tissues, as well as disc herniation and radicular pain. The release of chemokines from degenerating discs promotes the infiltration and activation of immune cells, further amplifying the inflammatory cascade. Leukocyte migration into the IVD is accompanied by the appearance of microvasculature tissue and nerve fibres. Furthermore, neurogenic factors, generated by both disc and immune cells, induce expression of pain-associated cation channels in the dorsal root ganglion. Depolarization of these ion channels is likely to promote discogenic and radicular pain, and reinforce the cytokine-mediated degenerative cascade. Taken together, an enhanced understanding of the contribution of cytokines and immune cells to these catabolic, angiogenic and nociceptive processes could provide new targets for the treatment of symptomatic disc disease. In this Review, the role of key inflammatory cytokines during each of the individual phases of degenerative disc disease, as well as the outcomes of major clinical studies aimed at blocking cytokine function, are discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            NADPH Oxidase-4 Mediates Myofibroblast Activation and Fibrogenic Responses to Lung Injury

            The NADPH oxidase (NOX) family of enzymes, which catalyze the reduction of O2 to form reactive oxygen species (ROS), have increased in number during eukaryotic evolution1,2. Seven isoforms of the NOX gene family have been identified in mammals; however, specific roles of NOX enzymes in mammalian physiology and pathophysiology have not been fully elucidated3,4. The best established physiological role of NOX enzymes is in host defense against pathogen invasion in diverse species, including plants5,6. The prototypical member of this family, NOX2 (gp91 phox ), is expressed in phagocytic cells and mediates microbicidal activities7,8. Here, we report a role for the NOX4 isoform in tissue repair functions of myofibroblasts and fibrogenesis. Transforming growth factor-β1 (TGF-β1) induces NOX4 expression in lung mesenchymal cells by a SMAD3-dependent mechanism. NOX4-dependent generation of hydrogen peroxide (H2O2) is required for TGF-β1-induced myofibroblast differentiation, extracellular matrix (ECM) production, and contractility. NOX4 is upregulated in lungs of mice subjected to non-infectious injury and in human idiopathic pulmonary fibrosis (IPF). Genetic or pharmacologic targeting of NOX4 abrogates fibrogenesis in two different murine models of lung injury. These studies support a novel function for NOX4 in tissue fibrogenesis and provide proof-of-concept for therapeutic targeting of NOX4 in recalcitrant fibrotic disorders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty-three individuals.

              A cross-sectional population study of magnetic resonance imaging (MRI) changes. OBJECTIVE.: To examine the pattern and prevalence of lumbar spine MRI changes within a southern Chinese population and their relationship with back pain. Previous studies on MRI changes and back pain have used populations of asymptomatic individuals or patients presenting with back pain and sciatica. Thus, the prevalence and pattern of intervertebral disc degeneration within the population is not known. Lumbar spine MRIs were obtained in 1043 volunteers between 18 to 55 years of age. MRI changes including disc degeneration, herniation, anular tears (HIZ), and Schmorl's nodes were noted by 2 independent observers. Differences were settled by consensus. Disc degeneration was graded using Schneiderman's classification, and a total score (DDD score) was calculated by the summation of the Schneiderman's score for each lumbar level. A K-mean clustering program was used to group individuals into different patterns of degeneration. Forty percent of individuals under 30 years of age had lumbar intervertebral disc degeneration (LDD), the prevalence of LDD increasing progressively to over 90% by 50 to 55 years of age. There was a positive correlation between the DDD score and low back pain. L5-S1 and L4-L5 were the most commonly affected levels. Apart from the usual patterns of degeneration, some uncommon patterns of degeneration were identified, comprising of subjects with skip level lesions (intervening normal levels) and isolated upper or mid lumbar degeneration. LDD is common, and its incidence increases with age. In a population setting, there is a significant association of LDD on MRI with back pain.
                Bookmark

                Author and article information

                Journal
                Oxid Med Cell Longev
                Oxid Med Cell Longev
                OMCL
                Oxidative Medicine and Cellular Longevity
                Hindawi
                1942-0900
                1942-0994
                2017
                14 March 2017
                : 2017
                : 5601593
                Affiliations
                Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
                Author notes

                Academic Editor: Victor M. Victor

                Author information
                http://orcid.org/0000-0002-9393-304X
                http://orcid.org/0000-0002-5519-7336
                http://orcid.org/0000-0001-7102-6484
                Article
                10.1155/2017/5601593
                5368368
                28392887
                a1803887-4784-495b-969f-01be7b4e3397
                Copyright © 2017 Chencheng Feng et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 23 December 2016
                : 20 February 2017
                Funding
                Funded by: National Natural Science Foundation of China
                Award ID: 81572186
                Award ID: 81271982
                Award ID: 81472076
                Award ID: 81401801
                Categories
                Review Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article