3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Renal ACE2 expression in human kidney disease.

      The Journal of Pathology
      Capillaries, chemistry, pathology, Carboxypeptidases, analysis, antagonists & inhibitors, Endothelium, Graft Rejection, Humans, Immunohistochemistry, methods, Kidney, Kidney Diseases, etiology, genetics, Kidney Glomerulus, Kidney Transplantation, Kidney Tubules, Muscle, Smooth, Vascular, Peptidyl-Dipeptidase A

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Angiotensin-converting enzyme 2 (ACE2) is a recently discovered homologue of angiotensin-converting enzyme (ACE) that is thought to counterbalance ACE. ACE2 cleaves angiotensin I and angiotensin II into the inactive angiotensin 1-9, and the vasodilator and anti-proliferative angiotensin 1-7, respectively. ACE2 is known to be present in human kidney, but no data on renal disease are available to date. Renal biopsies from 58 patients with diverse primary and secondary renal diseases were studied (hypertensive nephropathy n = 5, IgA glomerulopathy n = 8, minimal change nephropathy n = 7, diabetic nephropathy n = 8, focal glomerulosclerosis n = 5, vasculitis n = 7, and membranous glomerulopathy n = 18) in addition to 17 renal transplants and 18 samples from normal renal tissue. Immunohistochemical staining for ACE2 was scored semi-quantitatively. In control kidneys, ACE2 was present in tubular and glomerular epithelium and in vascular smooth muscle cells and the endothelium of interlobular arteries. In all primary and secondary renal diseases, and renal transplants, neo-expression of ACE2 was found in glomerular and peritubular capillary endothelium. There were no differences between the various renal disorders, or between acute and chronic rejection and control transplants. ACE inhibitor treatment did not alter ACE2 expression. In primary and secondary renal disease, and in transplanted kidneys, neo-expression of ACE2 occurs in glomerular and peritubular capillary endothelium. Further studies should elucidate the possible protective mechanisms involved in the de novo expression of ACE2 in renal disease. Copyright (c) 2004 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

          Related collections

          Author and article information

          Comments

          Comment on this article