2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Pentachloronitrobenzene alters progesterone production and primordial follicle recruitment in cultured granulosa cells and rat ovary†

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pentachloronitrobenzene (PCNB) is an organochlorine fungicide widely used for crop production and has become an environmental concern. Little is known about the effect of PCNB on ovarian steroidogenesis and follicular development. We found that PCNB stimulated Star expression and progesterone production in cultured rat granulosa cells in a dose-dependent manner. PCNB activated mitogen-activated protein kinase (MAPK3/1) extracellulat regulated kinase (ERK1/2), thus inhibition of either protein kinase A (PKA) or MAPK3/1 signaling pathway significantly attenuated progesterone biosynthesis caused by PCNB, suggesting that PCNB induced progesterone production by activating the cyclic adenosine monophosphate (cAMP/PKA) and MAPK3/1 signaling pathways. Further investigation demonstrated that PCNB induced Star expression and altered MAPK3/1 signaling in ovary tissues of immature SD rats treated with PCNB at the dose of 100, 200, or 300 mg/kg by daily gavage for 7 days, while serum progesterone level was dose-dependently decreased. We demonstrated that PCNB exposure accelerated the recruitment of primordial follicles into the growing follicle pool in ovary tissues, accompanied by increased levels of anti-Mullerian hormone (AMH) in both ovary tissues and serum. Taken together, our data demonstrate for the first time that PCNB stimulated Star expression, altered MAPK3/1 signaling and progesterone production in vivo and in vitro, and accelerated follicular development with a concomitant increase in AMH in ovary tissues and serum. Our findings provide novel insight into the toxicity of PCNB to animal ovary function.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Regulation of ovarian function: the role of anti-Müllerian hormone.

          Anti-Müllerian hormone (AMH), also known as Müllerian inhibiting substance, is a member of the transforming growth factor beta superfamily of growth and differentiation factors. In contrast to other members of the family, which exert a broad range of functions in multiple tissues, the principal function of AMH is to induce regression of the Müllerian ducts during male sex differentiation. However, the patterns of expression of AMH and its type II receptor in the postnatal ovary indicate that AMH may play an important role in ovarian folliculogenesis. This review describes several in vivo and in vitro studies showing that AMH participates in two critical selection points of follicle development: it inhibits the recruitment of primordial follicles into the pool of growing follicles and also decreases the responsiveness of growing follicles to FSH.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Anti-Müllerian hormone: a new marker for ovarian function.

            Anti-Müllerian hormone (AMH) is a member of the transforming growth factor beta family of growth and differentiation factors. In the ovary, AMH has an inhibitory effect on primordial follicle recruitment as well as on the responsiveness of growing follicles to follicle-stimulating hormone (FSH). The ovary-specific expression pattern in granulosa cells of growing nonselected follicles makes AMH an ideal marker for the size of the ovarian follicle pool. This review summarizes recent findings concerning AMH and its role as a marker for the quantitative aspect of ovarian reserve as well as ovarian dysfunction.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Anti-Müllerian hormone inhibits initiation of primordial follicle growth in the mouse ovary.

              Recruitment of primordial follicles is essential for female fertility; however, the exact mechanisms regulating this process are largely unknown. Earlier studies using anti-Müllerian hormone (AMH)-deficient mice suggested that AMH is involved in the regulation of primordial follicle recruitment. We tested this hypothesis in a neonatal ovary culture system, in which ovaries from 2-d-old C57Bl/6J mice were cultured for 2 or 4 d in the absence or presence of AMH. Ovaries from 2-d-old mice contain multiple primordial follicles, some naked oocytes, and no follicles at later stages of development. We observed that in the cultured ovaries, either nontreated or AMH-treated, follicular development progressed to the same extent as in in vivo ovaries of comparable age, confirming the validity of our culture system. However, in the presence of AMH, cultured ovaries contained 40% fewer growing follicles compared with control ovaries. A similar reduction was found after 4 d of culture. Consistent with these findings, we noted lower inhibin alpha-subunit expression in AMH-treated ovaries compared with untreated ovaries. In contrast, expression of AMH ligand type II receptor and the expression of oocyte markers growth and differentiation factor 9 and zona pellucida protein 3 were not influenced by AMH. Based on the results, we suggest that AMH inhibits initiation of primordial follicle growth and therefore functions as an inhibitory growth factor in the ovary during these early stages of folliculogenesis.
                Bookmark

                Author and article information

                Journal
                Biology of Reproduction
                Oxford University Press (OUP)
                0006-3363
                1529-7268
                February 2020
                February 14 2020
                October 16 2019
                February 2020
                February 14 2020
                October 16 2019
                : 102
                : 2
                : 511-520
                Affiliations
                [1 ]Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
                [2 ]Department of Genetics, National Research Institute for Family Planning, Beijing, China
                [3 ]Graduate School of Peking Union Medical College, Beijing, China
                [4 ]CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
                Article
                10.1093/biolre/ioz195
                a19c78dc-f632-4dd6-b66e-1c9f02ef615c
                © 2019

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model

                History

                Comments

                Comment on this article