25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Genomic Changes in Normal Breast Tissue in Women at Normal Risk or at High Risk for Breast Cancer

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sporadic breast cancer develops through the accumulation of molecular abnormalities in normal breast tissue, resulting from exposure to estrogens and other carcinogens beginning at adolescence and continuing throughout life. These molecular changes may take a variety of forms, including numerical and structural chromosomal abnormalities, epigenetic changes, and gene expression alterations. To characterize these abnormalities, a review of the literature has been conducted to define the molecular changes in each of the above major genomic categories in normal breast tissue considered to be either at normal risk or at high risk for sporadic breast cancer. This review indicates that normal risk breast tissues (such as reduction mammoplasty) contain evidence of early breast carcinogenesis including loss of heterozygosity, DNA methylation of tumor suppressor and other genes, and telomere shortening. In normal tissues at high risk for breast cancer (such as normal breast tissue adjacent to breast cancer or the contralateral breast), these changes persist, and are increased and accompanied by aneuploidy, increased genomic instability, a wide range of gene expression differences, development of large cancerized fields, and increased proliferation. These changes are consistent with early and long-standing exposure to carcinogens, especially estrogens. A model for the breast carcinogenic pathway in normal risk and high-risk breast tissues is proposed. These findings should clarify our understanding of breast carcinogenesis in normal breast tissue and promote development of improved methods for risk assessment and breast cancer prevention in women.

          Related collections

          Most cited references296

          • Record: found
          • Abstract: found
          • Article: not found

          Oxidative stress shortens telomeres.

          Telomeres in most human cells shorten with each round of DNA replication, because they lack the enzyme telomerase. This is not, however, the only determinant of the rate of loss of telomeric DNA. Oxidative damage is repaired less well in telomeric DNA than elsewhere in the chromosome, and oxidative stress accelerates telomere loss, whereas antioxidants decelerate it. I suggest here that oxidative stress is an important modulator of telomere loss and that telomere-driven replicative senescence is primarily a stress response. This might have evolved to block the growth of cells that have been exposed to a high risk of mutation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tamoxifen for early breast cancer: an overview of the randomised trials. Early Breast Cancer Trialists' Collaborative Group.

            There have been many randomised trials of adjuvant tamoxifen among women with early breast cancer, and an updated overview of their results is presented. In 1995, information was sought on each woman in any randomised trial that began before 1990 of adjuvant tamoxifen versus no tamoxifen before recurrence. Information was obtained and analysed centrally on each of 37000 women in 55 such trials, comprising about 87% of the worldwide evidence. Compared with the previous such overview, this approximately doubles the amount of evidence from trials of about 5 years of tamoxifen and, taking all trials together, on events occurring more than 5 years after randomisation. Nearly 8000 of the women had a low, or zero, level of the oestrogen-receptor protein (ER) measured in their primary tumour. Among them, the overall effects of tamoxifen appeared to be small, and subsequent analyses of recurrence and total mortality are restricted to the remaining women (18000 with ER-positive tumours, plus nearly 12000 more with untested tumours, of which an estimated 8000 would have been ER-positive). For trials of 1 year, 2 years, and about 5 years of adjuvant tamoxifen, the proportional recurrence reductions produced among these 30000 women during about 10 years of follow-up were 21% (SD 3), 29% (SD 2), and 47% (SD 3), respectively, with a highly significant trend towards greater effect with longer treatment (chi2(1)=52.0, 2p<0.00001). The corresponding proportional mortality reductions were 12% (SD 3), 17% (SD 3), and 26% (SD 4), respectively, and again the test for trend was significant (chi2(1) = 8.8, 2p=0.003). The absolute improvement in recurrence was greater during the first 5 years, whereas the improvement in survival grew steadily larger throughout the first 10 years. The proportional mortality reductions were similar for women with node-positive and node-negative disease, but the absolute mortality reductions were greater in node-positive women. In the trials of about 5 years of adjuvant tamoxifen the absolute improvements in 10-year survival were 10.9% (SD 2.5) for node-positive (61.4% vs 50.5% survival, 2p<0.00001) and 5.6% (SD 1.3) for node-negative (78.9% vs 73.3% survival, 2p<0.00001). These benefits appeared to be largely irrespective of age, menopausal status, daily tamoxifen dose (which was generally 20 mg), and of whether chemotherapy had been given to both groups. In terms of other outcomes among all women studied (ie, including those with "ER-poor" tumours), the proportional reductions in contralateral breast cancer were 13% (SD 13), 26% (SD 9), and 47% (SD 9) in the trials of 1, 2, or about 5 years of adjuvant tamoxifen. The incidence of endometrial cancer was approximately doubled in trials of 1 or 2 years of tamoxifen and approximately quadrupled in trials of 5 years of tamoxifen (although the number of cases was small and these ratios were not significantly different from each other). The absolute decrease in contralateral breast cancer was about twice as large as the absolute increase in the incidence of endometrial cancer. Tamoxifen had no apparent effect on the incidence of colorectal cancer or, after exclusion of deaths from breast or endometrial cancer, on any of the other main categories of cause of death (total nearly 2000 such deaths; overall relative risk 0.99 [SD 0.05]). For women with tumours that have been reliably shown to be ER-negative, adjuvant tamoxifen remains a matter for research. However, some years of adjuvant tamoxifen treatment substantially improves the 10-year survival of women with ER-positive tumours and of women whose tumours are of unknown ER status, with the proportional reductions in breast cancer recurrence and in mortality appearing to be largely unaffected by other patient characteristics or treatments.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization.

              Telomerase, the ribonucleoprotein enzyme that elongates telomeres, is repressed in normal human somatic cells but is reactivated during tumor progression. We report the cloning of a human gene, hEST2, that shares significant sequence similarity with the telomerase catalytic subunit genes of lower eukaryotes. hEST2 is expressed at high levels in primary tumors, cancer cell lines, and telomerase-positive tissues but is undetectable in telomerase-negative cell lines and differentiated telomerase-negative tissues. Moreover, the message is up-regulated concomitant with the activation of telomerase during the immortalization of cultured cells and down-regulated during in vitro cellular differentiation. Taken together, these observations suggest that the induction of hEST2 mRNA expression is required for the telomerase activation that occurs during cellular immortalization and tumor progression.
                Bookmark

                Author and article information

                Journal
                Breast Cancer (Auckl)
                Breast Cancer (Auckl)
                Breast Cancer: Basic and Clinical Research
                Breast Cancer : Basic and Clinical Research
                Libertas Academica
                1178-2234
                2016
                17 August 2016
                : 10
                : 109-146
                Affiliations
                Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
                Author notes
                Article
                bcbcr-10-2016-109
                10.4137/BCBCR.S39384
                4990153
                27559297
                a1a19bf6-69ea-482e-ac0e-5de9d26b249d
                © 2016 the author(s), publisher and licensee Libertas Academica Ltd.

                This is an open-access article distributed under the terms of the Creative Commons CC-BY-NC 3.0 License.

                History
                : 22 February 2016
                : 17 April 2016
                : 19 April 2016
                Categories
                Review

                Oncology & Radiotherapy
                breast cancer,breast cancer risk,normal breast tissue,carcinogenic pathway,cancerized fields,preneoplastic breast tissue

                Comments

                Comment on this article