17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Integration of microRNAome, proteomics and metabolomics to analyze arsenic-induced malignant cell transformation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Long-term exposure to arsenic has been linked to tumorigenesis in different organs and tissues, such as skin; however, the detailed mechanism remains unclear. In this present study, we integrated “omics” including microRNAome, proteomics and metabolomics to investigate the potential molecular mechanisms. Compared with non-malignant human keratinocytes (HaCaT), twenty-six miRNAs were significantly altered in arsenic-induced transformed cells. Among these miRNAs, the differential expression of six miRNAs was confirmed using Q-RT-PCR, representing potential oxidative stress genes. Two-dimensional gel electrophoresis (2D-PAGE) and mass spectrometry (MS) were performed to identify the differential expression of proteins in arsenic-induced transformed cells, and twelve proteins were significantly changed. Several proteins were associated with oxidative stress and carcinogenesis including heat shock protein beta-1 (HSPB1), peroxiredoxin-2 (PRDX2). Using ultra-performance liquid chromatography and Q-TOF mass spectrometry (UPLC/Q-TOF MS), 68 metabolites including glutathione, fumaric acid, citric acid, phenylalanine, and tyrosine, related to redox metabolism, glutathione metabolism, citrate cycle, met cycle, phenylalanine and tyrosine metabolism were identified and quantified. Taken together, these results indicated that arsenic-induced transformed cells exhibit alterations in miRNA, protein and metabolite profiles providing novel insights into arsenic-induced cell malignant transformation and identifying early potential biomarkers for cutaneous squamous cell carcinoma induced by arsenic.

          Related collections

          Most cited references78

          • Record: found
          • Abstract: found
          • Article: not found

          MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis.

          While global microRNA (miRNA) expression patterns of many embryologic, physiologic, and oncogenic processes have been described, description of the role of miRNAs in ductal adenocarcinoma of the pancreas is lacking. To define the expression pattern of miRNAs in pancreatic cancer and compare it with those of normal pancreas and chronic pancreatitis. Specimens were obtained at a National Cancer Institute-designated comprehensive cancer center from patients with ductal adenocarcinoma of the pancreas (n = 65) or chronic pancreatitis (n = 42) (January 2000-December 2005). All patients underwent curative pancreatectomy; those with pancreatic cancer were chemotherapy-naive. RNA harvested from resected pancreatic cancers and matched benign adjacent pancreatic tissue as well as from chronic pancreatitis specimens was hybridized to miRNA microarrays. Identification of differentially expressed miRNAs that could differentiate pancreatic cancer from normal pancreas, chronic pancreatitis, or both, as well as a pattern of miRNA expression predictive of long-term (>24 months) survival. Significance of Analysis of Microarrays and Prediction of Analysis of Microarrays were undertaken to identify miRNAs predictive of tissue type and prognosis. P values were calculated by t test, adjusted for multiple testing. Kaplan-Meier survival curves were constructed using mean miRNA expression (high vs low) as threshold and compared by log-rank analysis. Twenty-one miRNAs with increased expression and 4 with decreased expression were identified that correctly differentiated pancreatic cancer from benign pancreatic tissue in 90% of samples by cross validation. Fifteen overexpressed and 8 underexpressed miRNAs differentiated pancreatic cancer from chronic pancreatitis with 93% accuracy. A subgroup of 6 miRNAs was able to distinguish long-term survivors with node-positive disease from those dying within 24 months. Finally, high expression of miR-196a-2 was found to predict poor survival (median, 14.3 months [95% confidence interval, 12.4-16.2] vs 26.5 months [95% confidence interval, 23.4-29.6]; P = .009). Pancreatic cancer may have a distinct miRNA expression pattern that may differentiate it from normal pancreas and chronic pancreatitis. miRNA expression patterns may be able to distinguish between long- and short-term survivors, but these findings need to be validated in other study populations.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Public health. Worldwide occurrences of arsenic in ground water.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Recent advances in arsenic carcinogenesis: modes of action, animal model systems, and methylated arsenic metabolites.

              Recent advances in our knowledge of arsenic carcinogenesis include the development of rat or mouse models for all human organs in which inorganic arsenic is known to cause cancer-skin, lung, urinary bladder, liver, and kidney. Tumors can be produced from either promotion of carcinogenesis protocols (mouse skin and lungs, rat bladder, kidney, liver, and thyroid) or from complete carcinogenesis protocols (rat bladder and mouse lung). Experiments with p53(+/-) and K6/ODC transgenic mice administered dimethylarsinic acid or arsenite have shown some degree of carcinogenic, cocarcinogenic, or promotional activity in skin or bladder. At present, with the possible exception of skin, the arsenic carcinogenesis models in wild-type animals are more highly developed than in transgenic mice. Recent advances in arsenic metabolism have suggested that methylation of inorganic arsenic may be a toxification, rather than a detoxification, pathway and that trivalent methylated arsenic metabolites, particularly monomethylarsonous acid and dimethylarsinous acid, have a great deal of biological activity. Accumulating evidence indicates that these trivalent, methylated, and relatively less ionizable arsenic metabolites may be unusually capable of interacting with cellular targets such as proteins and even DNA. In risk assessment of environmental arsenic, it is important to know and to utilize both the mode of carcinogenic action and the shape of the dose-response curve at low environmental arsenic concentrations. Although much progress has been recently made in the area of arsenic's possible mode(s) of carcinogenic action, a scientific concensus has not yet been reached. In this review, nine different possible modes of action of arsenic carcinogenesis are presented and discussed-induced chromosomal abnormalities, oxidative stress, altered DNA repair, altered DNA methylation patterns, altered growth factors, enhanced cell proliferation, promotion/progression, gene amplification, and suppression of p53.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                31 October 2017
                27 June 2017
                : 8
                : 53
                : 90879-90896
                Affiliations
                1 Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
                2 Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
                3 Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
                4 Department of Gerontology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
                5 Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, Liaoning, China
                Author notes
                Correspondence to: Cong Peng, pengcongxy@ 123456csu.edu.cn
                [*]

                These authors have contributed equally to this work

                Article
                18741
                10.18632/oncotarget.18741
                5710891
                29207610
                a1a647ee-949b-497e-971a-52fc23ace117
                Copyright: © 2017 Zhou et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 4 November 2016
                : 21 April 2017
                Categories
                Research Paper

                Oncology & Radiotherapy
                arsenic,micrornaome,proteomics,metabolomics,cutaneous squamous cell carcinoma

                Comments

                Comment on this article