36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluating a Parainfluenza Virus 5-Based Vaccine in a Host with Pre-Existing Immunity against Parainfluenza Virus 5

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Parainfluenza virus 5 (PIV5), formerly known as simian virus 5 (SV5), is a paramyxovirus often referred to as canine parainfluenza virus (CPI) in the veterinary field. PIV5 is thought to be a contributing factor to kennel cough. Kennel cough vaccines containing live PIV5 have been used in dogs for many decades. PIV5 is not known to cause any diseases in humans or other animals. PIV5 has been used as a vector for vaccine development for humans and animals. One critical question concerning the use of PIV5 as a vector is whether prior exposure to PIV5 would prevent the use of PIV5-based vaccines. In this work, we have examined immunogenicity of a recombinant PIV5 expressing hemagglutinin (HA) of influenza A virus subtype 3 (rPIV5-H3) in dogs that were immunized against PIV5. We found that vaccination of the dogs containing neutralizing antibodies against PIV5 with rPIV5-H3 generated immunity against influenza A virus, indicting that PIV5-based vaccine is immunogenic in dogs with prior exposure. Furthermore, we have examined exposure of PIV5 in human populations. We have detected neutralizing antibody (nAb) against PIV5 in 13 out of 45 human serum samples (about 29 percent). The nAb titers in humans were lower than that in vaccinated dogs, suggesting that nAb in humans is unlikely to prevent PIV5 from being an efficacious vector in humans.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Transmission of equine influenza virus to dogs.

          Molecular and antigenic analyses of three influenza viruses isolated from outbreaks of severe respiratory disease in racing greyhounds revealed that they are closely related to H3N8 equine influenza virus. Phylogenetic analysis indicated that the canine influenza virus genomes form a monophyletic group, consistent with a single interspecies virus transfer. Molecular changes in the hemagglutinin suggested adaptive evolution in the new host. The etiologic role of this virus in respiratory disease was supported by the temporal association of rising antibody titers with disease and by experimental inoculation studies. The geographic expansion of the infection and its persistence for several years indicate efficient transmission of canine influenza virus among greyhounds. Evidence of infection in pet dogs suggests that this infection may also become enzootic in this population.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transmission of Equine Influenza Virus to English Foxhounds

            We retrospectively demonstrated that an outbreak of severe respiratory disease in a pack of English foxhounds in the United Kingdom in September 2002 was caused by an equine influenza A virus (H3N8). We also demonstrated that canine respiratory tissue possesses the relevant receptors for infection with equine influenza virus.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Recovery of infectious SV5 from cloned DNA and expression of a foreign gene.

              A complete cDNA clone of the genome (15,246 nucleotides) of the paramyxovirus SV5 was constructed from cDNAs such that an anti-genome RNA could be transcribed by T7 RNA polymerase and the correct 3' end generated by cleavage using hepatitis delta virus ribozyme. The plasmid encoding the antigenome sequence was transfected into cells previously infected with recombinant vaccinia virus that expressed T7 RNA polymerase, together with helper plasmids that expressed the viral replication proteins, NP, P, and L, under the control of the T7 polymerase promoter. Rescue of the RNA genome from DNA was demonstrated by recovering SV5 with the tag restriction sites introduced into the DNA clone, using RT-PCR of the genome RNA and nucleotide sequencing. Rescue of SV5 from DNA did not require expression of the viral V protein as a helper plasmid, suggesting that V protein is not essential for initial replication. The infectious cDNA of SV5 was also manipulated to express green fluorescent protein (GFP) under the control of SV5 transcriptional start and stop signals introduced between the HN and L genes. The amount of GFP that was expressed varied depending on the nature of the newly introduced transcription signals. Copyright 1997 Academic Press.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                20 November 2012
                : 7
                : 11
                : e50144
                Affiliations
                [1 ]Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, Georgia, United States of America
                [2 ]Intercollege Graduate Program in Cell and Developmental Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
                [3 ]University Research Animal Resources and the Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
                [4 ]Department of Pathology, University of Georgia College of Veterinary Medicine, Athens, Georgia, United States of America
                Aaron Diamond AIDS Research Center with the Rockefeller University, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: ZC PX GWS SBH ZFF BH. Analyzed the data: ZC PX GWS SBH BR ZFF BH. Wrote the paper: ZC PX GWS SBH BH. Designed the experiments: ZC PX GWS SBH BR ZFF BH. Performed experiments: ZC PX GWS SBR BR.

                [¤]

                Current address: California National Primate Research Center, University of California–Davis, Davis, California, United States of America

                Article
                PONE-D-12-30503
                10.1371/journal.pone.0050144
                3502407
                23185558
                a1aef6dc-b002-476a-9b08-660939c70c4d
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 5 October 2012
                : 17 October 2012
                Page count
                Pages: 8
                Funding
                This work was supported by a grant from the National Institute of Allergy and Infectious Disease (R01AI070847) to B.H. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Microbiology
                Virology
                Viral Classification
                RNA viruses
                Medicine
                Clinical Immunology
                Immunity
                Vaccination
                Vaccines
                Vaccine Development
                Veterinary Science
                Veterinary Diseases
                Veterinary Virology
                Veterinary Medicine
                Veterinary Immunology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article