• Record: found
  • Abstract: found
  • Article: not found

Heterologous expression of mouse cytochrome P450 2e1 in V79 cells: construction and characterisation of the cell line and comparison with V79 cell lines stably expressing rat P450 2E1 and human P450 2E1.

Alternatives to laboratory animals : ATLA

biosynthesis, Cell Line, Chlorzoxazone, metabolism, Cytochrome P-450 CYP2E1, Dimethylnitrosamine, Animals, toxicity, Humans, Hydroxylation, Kinetics, Mice, Rats, Recombinant Proteins

Read this article at

      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


      A V79 Chinese hamster cell line was constructed for stable expression of mouse cytochrome P450 2e1 (Cyp2e1), as an addition to the existing cell battery consisting of cell lines stably expressing rat CYP2E1 and human CYP2E1 (V79 Cell Battery). The aim was to establish a cell battery that offers the in vitro possibility of investigating species-specific differences in the toxicity and metabolism of chemicals representing substrates for CYP2E1. The newly established cell line (V79m2E1) effectively expressed Cyp2e1 in the catalytically active form. The expression of catalytically active CYP2E1 in V79m2E1 cells was maintained over several months in culture, as demonstrated by Western Blotting and chlorzoxazone (CLX) 6-hydroxylase activity. The cells exhibited CLX 6-hydroxylase activity with a Km of 27.8 microM/l and Vmax of 40 pmol/mg protein/minute, compared with a Km of 28.2/28.6 microM/l and a Vmax of 130/60 pmol/mg protein/minute from V79r2E1/V79h2E1 cells. Furthermore, the CYP2E1-dependent mutagenicity of N-nitrosodimethylamine could be demonstrated in the V79m2E1 cells. Therefore, the new cell battery permits the interspecies comparison of CYP2E1-dependent toxicity and of metabolism of chemicals between humans and the two major rodent species--the rat and the mouse--that are usually used in classical toxicity studies.

      Related collections

      Author and article information



      Comment on this article