5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Therapeutic use of mesenchymal stem cell-derived extracellular vesicles in acute lung injury : MSC EV IN ACUTE LUNG INJURY

      1 , 2 , 1 , 1
      Transfusion
      Wiley

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Acute respiratory distress syndrome is a major cause of respiratory failure in critically ill patients. Despite extensive research into its pathophysiology, mortality remains high. No effective pharmacotherapy exists. Based largely on numerous preclinical animal studies, administration of mesenchymal stem or stromal cell (MSC) as a therapeutic for acute lung injury (ALI) holds great promise, and Phase I and II clinical trials are currently under way internationally. However, concern for the use of stem cells, specifically the risk of iatrogenic tumor formation, as well as the prohibitive cost of production, storage, and distribution of cells in bone marrow transplant facilities, may limit access to this lifesaving therapy. Accumulating evidence now suggest that novel stem cell-derived therapies, including MSC-conditioned medium and extracellular vesicles (EVs) released from MSCs, might constitute compelling alternatives. The current review summarizes the preclinical studies testing MSC EVs as treatment for ALI and other inflammatory lung diseases. While certain logistic obstacles limit the clinical applications of MSC-conditioned medium such as the volume required for treatment and lack of standardization of what constitutes the components of conditioned medium, the therapeutic application of MSC EVs remains promising, primarily due to ability of EVs to maintain the functional phenotype of the parent cell. However, utilization of MSC EVs will require large-scale production and standardization concerning identification, characterization, and quantification.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair--current views.

          Mesenchymal stem cells or multipotent stromal cells (MSCs) isolated from the bone marrow of adult organisms were initially characterized as plastic adherent, fibroblastoid cells with the capacity to generate heterotopic osseous tissue when transplanted in vivo. In recent years, MSCs or MSC-like cells have been shown to reside within the connective tissue of most organs, and their surface phenotype has been well described. A large number of reports have also indicated that the cells possess the capacity to transdifferentiate into epithelial cells and lineages derived from the neuroectoderm. The broad developmental plasticity of MSCs was originally thought to contribute to their demonstrated efficacy in a wide variety of experimental animal models of disease as well as in human clinical trials. However, new findings suggest that the ability of MSCs to alter the tissue microenvironment via secretion of soluble factors may contribute more significantly than their capacity for transdifferentiation in tissue repair. Herein, we critically evaluate the literature describing the plasticity of MSCs and offer insight into how the molecular and functional heterogeneity of this cell population, which reflects the complexity of marrow stroma as an organ system, may confound interpretation of their transdifferentiation potential. Additionally, we argue that this heterogeneity also provides a basis for the broad therapeutic efficacy of MSCs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms.

            Severe acute renal failure (ARF) remains a common, largely treatment-resistant clinical problem with disturbingly high mortality rates. Therefore, we tested whether administration of multipotent mesenchymal stem cells (MSC) to anesthetized rats with ischemia-reperfusion-induced ARF (40-min bilateral renal pedicle clamping) could improve the outcome through amelioration of inflammatory, vascular, and apoptotic/necrotic manifestations of ischemic kidney injury. Accordingly, intracarotid administration of MSC (approximately 10(6)/animal) either immediately or 24 h after renal ischemia resulted in significantly improved renal function, higher proliferative and lower apoptotic indexes, as well as lower renal injury and unchanged leukocyte infiltration scores. Such renoprotection was not obtained with syngeneic fibroblasts. Using in vivo two-photon laser confocal microscopy, fluorescence-labeled MSC were detected early after injection in glomeruli, and low numbers attached at microvasculature sites. However, within 3 days of administration, none of the administered MSC had differentiated into a tubular or endothelial cell phenotype. At 24 h after injury, expression of proinflammatory cytokines IL-1beta, TNF-alpha, IFN-gamma, and inducible nitric oxide synthase was significantly reduced and that of anti-inflammatory IL-10 and bFGF, TGF-alpha, and Bcl-2 was highly upregulated in treated kidneys. We conclude that the early, highly significant renoprotection obtained with MSC is of considerable therapeutic promise for the cell-based management of clinical ARF. The beneficial effects of MSC are primarily mediated via complex paracrine actions and not by their differentiation into target cells, which, as such, appears to be a more protracted response that may become important in late-stage organ repair.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hyaluronan as an immune regulator in human diseases.

              Accumulation and turnover of extracellular matrix components are the hallmarks of tissue injury. Fragmented hyaluronan stimulates the expression of inflammatory genes by a variety of immune cells at the injury site. Hyaluronan binds to a number of cell surface proteins on various cell types. Hyaluronan fragments signal through both Toll-like receptor (TLR) 4 and TLR2 as well as CD44 to stimulate inflammatory genes in inflammatory cells. Hyaluronan is also present on the cell surface of epithelial cells and provides protection against tissue damage from the environment by interacting with TLR2 and TLR4. Hyaluronan and hyaluronan-binding proteins regulate inflammation, tissue injury, and repair through regulating inflammatory cell recruitment, release of inflammatory cytokines, and cell migration. This review focuses on the role of hyaluronan as an immune regulator in human diseases.
                Bookmark

                Author and article information

                Journal
                Transfusion
                Transfusion
                Wiley
                00411132
                February 2019
                February 2019
                November 01 2018
                : 59
                : S1
                : 876-883
                Affiliations
                [1 ]Department of Anesthesiology; University of California at San Francisco; San Francisco California
                [2 ]Department of Anesthesiology and Pain Medicine; Yonsei University College of Medicine; Seoul Republic of Korea
                Article
                10.1111/trf.14838
                6368889
                30383895
                a1b87521-c2a3-4cd6-b408-333c9d2ad46e
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article