13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The combined effects of microglia activation and brain glucose hypometabolism in early-onset Alzheimer’s disease

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Early-onset Alzheimer’s disease (EOAD) is characterized by young age of onset (< 65 years), severe neurodegeneration, and rapid disease progression, thus differing significantly from typical late-onset Alzheimer’s disease. Growing evidence suggests a primary role of neuroinflammation in AD pathogenesis. However, the role of microglia activation in EOAD remains a poorly explored field. Investigating microglial activation and its influence on the development of synaptic dysfunction and neuronal loss in EOAD may contribute to the understanding of its pathophysiology and to subject selection in clinical trials. In our study, we aimed to assess the amount of neuroinflammation and neurodegeneration and their relationship in EOAD patients, through positron emission tomography (PET) measures of microglia activation and brain metabolic changes.

          Methods

          We prospectively enrolled 12 EOAD patients, classified according to standard criteria, who underwent standard neurological and neuropsychological evaluation, CSF analysis, brain MRI, and both [ 18F]-FDG PET and [ 11C]-(R)-PK11195 PET. Healthy controls databases were used for statistical comparison. [ 18F]-FDG PET brain metabolism in single subjects and as a group was assessed by an optimized SPM voxel-wise single-subject method. [ 11C]-PK11195 PET binding potentials were obtained using reference regions selected with an optimized clustering procedure followed by a parametric analysis. We performed a topographic interaction analysis and correlation analysis in AD-signature metabolic dysfunctional regions and regions of microglia activation. A network connectivity analysis was performed using the interaction regions of hypometabolism and [ 11C]-PK11195 PET BP increases.

          Results

          EOAD patients showed a significant and extended microglia activation, as [ 11C]-PK11195 PET binding potential increases, and hypometabolism in typical AD-signature brain regions, i.e., temporo-parietal cortex, with additional variable frontal and occipital hypometabolism in the EOAD variants. There was a spatial concordance in the interaction areas and significant correlations between the two biological changes. The network analysis showed a disruption of frontal connectivity induced by the metabolic/microglia effects.

          Conclusion

          The severe microglia activation characterizing EOAD and contributing to neurodegeneration may be a marker of rapid disease progression. The coupling between brain glucose hypometabolism and local immune response in AD-signature regions supports their biological interaction.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Parametric imaging of ligand-receptor binding in PET using a simplified reference region model.

          A method is presented for the generation of parametric images of radioligand-receptor binding using PET. The method is based on a simplified reference region compartmental model, which requires no arterial blood sampling, and gives parametric images of both the binding potential of the radioligand and its local rate of delivery relative to the reference region. The technique presented for the estimation of parameters in the model employs a set of basis functions which enables the incorporation of parameter bounds. This basis function method (BFM) is compared with conventional nonlinear least squares estimation of parameters (NLM), using both simulated and real data. BFM is shown to be more stable than NLM at the voxel level and is computationally much faster. Application of the technique is illustrated for three radiotracers: [11C]raclopride (a marker of the D2 receptor), [11C]SCH 23390 (a marker of the D1 receptor) in human studies, and [11C]CFT (a marker of the dopamine transporter) in rats. The assumptions implicit in the model and its implementation using BFM are discussed. Copyright 1997 Academic Press.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            A standardized [18F]-FDG-PET template for spatial normalization in statistical parametric mapping of dementia.

            [18F]-fluorodeoxyglucose (FDG) Positron Emission Tomography (PET) is a widely used diagnostic tool that can detect and quantify pathophysiology, as assessed through changes in cerebral glucose metabolism. [18F]-FDG PET scans can be analyzed using voxel-based statistical methods such as Statistical Parametric Mapping (SPM) that provide statistical maps of brain abnormalities in single patients. In order to perform SPM, a "spatial normalization" of an individual's PET scan is required to match a reference PET template. The PET template currently used for SPM normalization is based on [15O]-H2O images and does not resemble either the specific metabolic features of [18F]-FDG brain scans or the specific morphological characteristics of individual brains affected by neurodegeneration. Thus, our aim was to create a new [18F]-FDG PET aging and dementia-specific template for spatial normalization, based on images derived from both age-matched controls and patients. We hypothesized that this template would increase spatial normalization accuracy and thereby preserve crucial information for research and diagnostic purposes. We investigated the statistical sensitivity and registration accuracy of normalization procedures based on the standard and new template-at the single-subject and group level-independently for subjects with Mild Cognitive Impairment (MCI), probable Alzheimer's Disease (AD), Frontotemporal lobar degeneration (FTLD) and dementia with Lewy bodies (DLB). We found a significant statistical effect of the population-specific FDG template-based normalisation in key anatomical regions for each dementia subtype, suggesting that spatial normalization with the new template provides more accurate estimates of metabolic abnormalities for single-subject and group analysis, and therefore, a more effective diagnostic measure.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              In vivo radioligand binding to translocator protein correlates with severity of Alzheimer's disease.

              Neuroinflammation is a pathological hallmark of Alzheimer's disease, but its role in cognitive impairment and its course of development during the disease are largely unknown. To address these unknowns, we used positron emission tomography with (11)C-PBR28 to measure translocator protein 18 kDa (TSPO), a putative biomarker for inflammation. Patients with Alzheimer's disease, patients with mild cognitive impairment and older control subjects were also scanned with (11)C-Pittsburgh Compound B to measure amyloid burden. Twenty-nine amyloid-positive patients (19 Alzheimer's, 10 mild cognitive impairment) and 13 amyloid-negative control subjects were studied. The primary goal of this study was to determine whether TSPO binding is elevated in patients with Alzheimer's disease, and the secondary goal was to determine whether TSPO binding correlates with neuropsychological measures, grey matter volume, (11)C-Pittsburgh Compound B binding, or age of onset. Patients with Alzheimer's disease, but not those with mild cognitive impairment, had greater (11)C-PBR28 binding in cortical brain regions than controls. The largest differences were seen in the parietal and temporal cortices, with no difference in subcortical regions or cerebellum. (11)C-PBR28 binding inversely correlated with performance on Folstein Mini-Mental State Examination, Clinical Dementia Rating Scale Sum of Boxes, Logical Memory Immediate (Wechsler Memory Scale Third Edition), Trail Making part B and Block Design (Wechsler Adult Intelligence Scale Third Edition) tasks, with the largest correlations observed in the inferior parietal lobule. (11)C-PBR28 binding also inversely correlated with grey matter volume. Early-onset (<65 years) patients had greater (11)C-PBR28 binding than late-onset patients, and in parietal cortex and striatum (11)C-PBR28 binding correlated with lower age of onset. Partial volume corrected and uncorrected results were generally in agreement; however, the correlation between (11)C-PBR28 and (11)C-Pittsburgh Compound B binding was seen only after partial volume correction. The results suggest that neuroinflammation, indicated by increased (11)C-PBR28 binding to TSPO, occurs after conversion of mild cognitive impairment to Alzheimer's disease and worsens with disease progression. Greater inflammation may contribute to the precipitous disease course typically seen in early-onset patients. (11)C-PBR28 may be useful in longitudinal studies to mark the conversion from mild cognitive impairment or to assess response to experimental treatments of Alzheimer's disease.
                Bookmark

                Author and article information

                Contributors
                perani.daniela@hsr.it
                Journal
                Alzheimers Res Ther
                Alzheimers Res Ther
                Alzheimer's Research & Therapy
                BioMed Central (London )
                1758-9193
                30 April 2020
                30 April 2020
                2020
                : 12
                : 50
                Affiliations
                [1 ]GRID grid.15496.3f, School of Psychology, , Vita-Salute San Raffaele University, ; Milan, Italy
                [2 ]GRID grid.18887.3e, ISNI 0000000417581884, In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, , IRCCS San Raffaele Scientific Institute, ; Milan, Italy
                [3 ]GRID grid.266102.1, ISNI 0000 0001 2297 6811, Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, , University of California, ; San Francisco, CA USA
                [4 ]GRID grid.18887.3e, ISNI 0000000417581884, Nuclear Medicine Unit, , San Raffaele Hospital, ; Milan, Italy
                [5 ]GRID grid.18887.3e, ISNI 0000000417581884, Department of Neurology and INSPE, , San Raffaele Scientific Institute, ; Milan, Italy
                [6 ]Clinical Neuroscience Department, San Raffaele Turro Hospital, Milan, Italy
                Author information
                http://orcid.org/0000-0002-9784-292X
                Article
                619
                10.1186/s13195-020-00619-0
                7193377
                32354345
                a1c083e2-6cf5-450d-a95c-0224cd1a7fc3
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 31 August 2019
                : 22 April 2020
                Funding
                Funded by: EU FP7 INMIND Project spiepr132
                Award ID: no.spiepr146 278850
                Award Recipient :
                Funded by: IVASCOMAR project
                Award ID: no.spiepr146 CTN01_00177_165430
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2020

                Neurology
                positron emission tomography,early-onset alzheimer’s disease,[18f]-fdg pet,[11c]-(r)-pk11195 pet,microglia activation

                Comments

                Comment on this article