15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Third-Generation Sequencing in the Clinical Laboratory: Exploring the Advantages and Challenges of Nanopore Sequencing

      , , , ,
      Journal of Clinical Microbiology
      American Society for Microbiology

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Metagenomic sequencing for infectious disease diagnostics is an important tool that holds promise for use in the clinical laboratory. Challenges for implementation so far include high cost, the length of time to results, and the need for technical and bioinformatics expertise. However, the recent technological innovation of nanopore sequencing from Oxford Nanopore Technologies (ONT) has the potential to address these challenges. ONT sequencing is an attractive platform for clinical laboratories to adopt due to its low cost, rapid turnaround time, and user-friendly bioinformatics pipelines. However, this method still faces the problem of base-calling accuracy compared to other platforms. This review highlights the general challenges of pathogen detection in clinical specimens by metagenomic sequencing, the advantages and disadvantages of the ONT platform, and how research to date supports the potential future use of nanopore sequencing in infectious disease diagnostics.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Completing bacterial genome assemblies with multiplex MinION sequencing

          Illumina sequencing platforms have enabled widespread bacterial whole genome sequencing. While Illumina data is appropriate for many analyses, its short read length limits its ability to resolve genomic structure. This has major implications for tracking the spread of mobile genetic elements, including those which carry antimicrobial resistance determinants. Fully resolving a bacterial genome requires long-read sequencing such as those generated by Oxford Nanopore Technologies (ONT) platforms. Here we describe our use of the ONT MinION to sequence 12 isolates of Klebsiella pneumoniae on a single flow cell. We assembled each genome using a combination of ONT reads and previously available Illumina reads, and little to no manual intervention was needed to achieve fully resolved assemblies using the Unicycler hybrid assembler. Assembling only ONT reads with Canu was less effective, resulting in fewer resolved genomes and higher error rates even following error correction with Nanopolish. We demonstrate that multiplexed ONT sequencing is a valuable tool for high-throughput bacterial genome finishing. Specifically, we advocate the use of Illumina sequencing as a first analysis step, followed by ONT reads as needed to resolve genomic structure.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Antibiotics and the Human Gut Microbiome: Dysbioses and Accumulation of Resistances

            The human microbiome is overly exposed to antibiotics, due, not only to their medical use, but also to their utilization in farm animals and crops. Microbiome composition can be rapidly altered by exposure to antibiotics, with potential immediate effects on health, for instance through the selection of resistant opportunistic pathogens that can cause acute disease. Microbiome alterations induced by antibiotics can also indirectly affect health in the long-term. The mutualistic microbes in the human body interact with many physiological processes, and participate in the regulation of immune and metabolic homeostasis. Therefore, antibiotic exposure can alter many basic physiological equilibria, promoting long-term disease. In addition, excessive antibiotic use fosters bacterial resistance, and the overly exposed human microbiome has become a significant reservoir of resistance genes, contributing to the increasing difficulty in controlling bacterial infections. Here, the complex relationships between antibiotics and the human microbiome are reviewed, with focus on the intestinal microbiota, addressing (1) the effects of antibiotic use on the composition and function of the gut microbiota, (2) the impact of antibiotic-induced microbiota alterations on immunity, metabolism, and health, and (3) the role of the gut microbiota as a reservoir of antibiotic resistances.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Laboratory validation of a clinical metagenomic sequencing assay for pathogen detection in cerebrospinal fluid

              Metagenomic next-generation sequencing (mNGS) for pan-pathogen detection has been successfully tested in proof-of-concept case studies in patients with acute illness of unknown etiology but to date has been largely confined to research settings. Here, we developed and validated a clinical mNGS assay for diagnosis of infectious causes of meningitis and encephalitis from cerebrospinal fluid (CSF) in a licensed microbiology laboratory. A customized bioinformatics pipeline, SURPI+, was developed to rapidly analyze mNGS data, generate an automated summary of detected pathogens, and provide a graphical user interface for evaluating and interpreting results. We established quality metrics, threshold values, and limits of detection of 0.2–313 genomic copies or colony forming units per milliliter for each representative organism type. Gross hemolysis and excess host nucleic acid reduced assay sensitivity; however, spiked phages used as internal controls were reliable indicators of sensitivity loss. Diagnostic test accuracy was evaluated by blinded mNGS testing of 95 patient samples, revealing 73% sensitivity and 99% specificity compared to original clinical test results, and 81% positive percent agreement and 99% negative percent agreement after discrepancy analysis. Subsequent mNGS challenge testing of 20 positive CSF samples prospectively collected from a cohort of pediatric patients hospitalized with meningitis, encephalitis, and/or myelitis showed 92% sensitivity and 96% specificity relative to conventional microbiological testing of CSF in identifying the causative pathogen. These results demonstrate the analytic performance of a laboratory-validated mNGS assay for pan-pathogen detection, to be used clinically for diagnosis of neurological infections from CSF.
                Bookmark

                Author and article information

                Journal
                Journal of Clinical Microbiology
                J Clin Microbiol
                American Society for Microbiology
                0095-1137
                1098-660X
                December 23 2019
                December 23 2019
                October 16 2019
                : 58
                : 1
                Article
                10.1128/JCM.01315-19
                6935936
                31619531
                a1c70c30-2b4b-4651-8e71-3908690626be
                © 2019
                History

                Comments

                Comment on this article