16
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Sex and Gender in Neurodegenerative Diseases

      Submit here before September 30, 2024

      About Neurodegenerative Diseases: 3.0 Impact Factor I 4.3 CiteScore I 0.695 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      The Ischemic Penumbra: Correlates in Imaging and Implications for Treatment of Ischemic Stroke

      review-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The concept of the ischemic penumbra was formulated 30 years ago based on experiments in animal models showing functional impairment and electrophysiological disturbances with decreasing flow to the brain below defined values (the threshold for function) and irreversible tissue damage with the blood supply further decreased (the threshold for infarction). The perfusion range between these thresholds was termed ‘penumbra’, and restitution of flow above the functional threshold was able to reverse the deficits without permanent damage. However, in further experiments, the dependency of the development of irreversible lesions on the interaction of the severity and duration of critically reduced blood flow was established – proving that the lower the flow, the shorter the time for efficient reperfusion. Therefore, infarction develops from the core of ischemia to the areas of less severe hypoperfusion. The propagation of irreversible tissue damage is characterized by a complex cascade of interconnected electrophysiological, molecular, metabolic and perfusional disturbances. Waves of depolarizations, the peri-infarct spreading depression-like depolarizations, inducing activation of ion pumps and liberation of excitatory transmitters, have dramatic consequences as drastically increased metabolic demand cannot be satisfied in regions with critically reduced blood supply. The translation of experimental concept into the basis for efficient treatment of stroke requires non-invasive methods by which regional flow and energy metabolism can be repeatedly investigated to demonstrate penumbra tissue that can benefit from therapeutic interventions. Positron emission tomography (PET) allows the quantification of regional cerebral blood flow, the regional metabolic rate for oxygen and the regional oxygen extraction fraction. From these variables, clear definitions of irreversible tissue damage and critically perfused but potentially salvageable tissue (i.e. the penumbra) can be achieved in animal models and stroke patients. Additionally, further tracers can be used for early detection of irreversible tissue damage, e.g. by the central benzodiazepine receptor ligand flumazenil. However, PET is a research tool and its complex logistics limit clinical routine applications. As a widely applicable clinical tool, perfusion/diffusion-weighted (PW/DW) MRI is used, and the ‘mismatch’ between the PW and the DW abnormalities serve as an indicator of the penumbra. However, comparative studies of PW/DW-MRI and PET have pointed to an overestimation of the core of irreversible infarction as well as of the penumbra by MRI modalities. Some of these discrepancies can be explained by unselective application of relative perfusion thresholds, which might be improved by more complex analytical procedures. Heterogeneity of the MRI signatures used for the definition of the mismatch are also responsible for disappointing results in the application of PW/DW-MRI for the selection of patients for clinical trials. As long as a validation of the mismatch selection paradigm is lacking, its use as a surrogate marker of outcome is limited.

          Related collections

          Most cited references89

          • Record: found
          • Abstract: found
          • Article: not found

          Magnetic resonance imaging profiles predict clinical response to early reperfusion: the diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study.

          To determine whether prespecified baseline magnetic resonance imaging (MRI) profiles can identify stroke patients who have a robust clinical response after early reperfusion when treated 3 to 6 hours after symptom onset. We conducted a prospective, multicenter study of 74 consecutive stroke patients admitted to academic stroke centers in North America and Europe. An MRI scan was obtained immediately before and 3 to 6 hours after treatment with intravenous tissue plasminogen activator 3 to 6 hours after symptom onset. Baseline MRI profiles were used to categorize patients into subgroups, and clinical responses were compared based on whether early reperfusion was achieved. Early reperfusion was associated with significantly increased odds of achieving a favorable clinical response in patients with a perfusion/diffusion mismatch (odds ratio, 5.4; p = 0.039) and an even more favorable response in patients with the Target Mismatch profile (odds ratio, 8.7; p = 0.011). Patients with the No Mismatch profile did not appear to benefit from early reperfusion. Early reperfusion was associated with fatal intracranial hemorrhage in patients with the Malignant profile. For stroke patients treated 3 to 6 hours after onset, baseline MRI findings can identify subgroups that are likely to benefit from reperfusion therapies and can potentially identify subgroups that are unlikely to benefit or may be harmed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury.

            Cortical spreading depression (CSD) and depolarization waves are associated with dramatic failure of brain ion homeostasis, efflux of excitatory amino acids from nerve cells, increased energy metabolism and changes in cerebral blood flow (CBF). There is strong clinical and experimental evidence to suggest that CSD is involved in the mechanism of migraine, stroke, subarachnoid hemorrhage and traumatic brain injury. The implications of these findings are widespread and suggest that intrinsic brain mechanisms have the potential to worsen the outcome of cerebrovascular episodes or brain trauma. The consequences of these intrinsic mechanisms are intimately linked to the composition of the brain extracellular microenvironment and to the level of brain perfusion and in consequence brain energy supply. This paper summarizes the evidence provided by novel invasive techniques, which implicates CSD as a pathophysiological mechanism for this group of acute neurological disorders. The findings have implications for monitoring and treatment of patients with acute brain disorders in the intensive care unit. Drawing on the large body of experimental findings from animal studies of CSD obtained during decades we suggest treatment strategies, which may be used to prevent or attenuate secondary neuronal damage in acutely injured human brain cortex caused by depolarization waves.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effects of alteplase beyond 3 h after stroke in the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET): a placebo-controlled randomised trial.

              Whether intravenous tissue plasminogen activator (alteplase) is effective beyond 3 h after onset of acute ischaemic stroke is unclear. We aimed to test whether alteplase given 3-6 h after stroke onset promotes reperfusion and attenuates infarct growth in patients who have a mismatch in perfusion-weighted MRI (PWI) and diffusion-weighted MRI (DWI). We prospectively and randomly assigned 101 patients to receive alteplase or placebo 3-6 h after onset of ischaemic stroke. PWI and DWI were done before and 3-5 days after therapy, with T2-weighted MRI at around day 90. The primary endpoint was infarct growth between baseline DWI and the day 90 T2 lesion in mismatch patients. Major secondary endpoints were reperfusion, good neurological outcome, and good functional outcome. Patients, caregivers, and investigators were unaware of treatment allocations. Primary analysis was per protocol. This study is registered with ClinicalTrials.gov, number NCT00238537. We randomly assigned 52 patients to alteplase and 49 patients to placebo. Mean age was 71.6 years, and median score on the National Institutes of Health stroke scale was 13. 85 of 99 (86%) patients had mismatch of PWI and DWI. The geometric mean infarct growth (exponential of the mean log of relative growth) was 1.24 with alteplase and 1.78 with placebo (ratio 0.69, 95% CI 0.38-1.28; Student's t test p=0.239); the median relative infarct growth was 1.18 with alteplase and 1.79 with placebo (ratio 0.66, 0.36-0.92; Wilcoxon's test p=0.054). Reperfusion was more common with alteplase than with placebo and was associated with less infarct growth (p=0.001), better neurological outcome (p<0.0001), and better functional outcome (p=0.010) than was no reperfusion. Alteplase was non-significantly associated with lower infarct growth and significantly associated with increased reperfusion in patients who had mismatch. Because reperfusion was associated with improved clinical outcomes, phase III trials beyond 3 h after treatment are warranted.
                Bookmark

                Author and article information

                Journal
                CED
                Cerebrovasc Dis
                10.1159/issn.1015-9770
                Cerebrovascular Diseases
                S. Karger AG
                1015-9770
                1421-9786
                2011
                October 2011
                15 September 2011
                : 32
                : 4
                : 307-320
                Affiliations
                Max Planck Institute for Neurological Research, Cologne, Germany
                Author notes
                *Prof. Dr. W.-D. Heiss, Max Planck Institute for Neurological Research, Gleueler Strasse 50, DE–50931 Cologne (Germany), Tel. +49 221 4726 220, E-Mail wdh@nf.mpg.de
                Article
                330462 Cerebrovasc Dis 2011;32:307–320
                10.1159/000330462
                21921593
                a1ca78ad-4e1c-45bb-ad58-a5c7bdcd44e0
                © 2011 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                Page count
                Figures: 4, Pages: 14
                Categories
                Review

                Geriatric medicine,Neurology,Cardiovascular Medicine,Neurosciences,Clinical Psychology & Psychiatry,Public health
                Core of infarction,Penumbra,Flow thresholds,Neuronal activity,Peri-infarct depolarization,Positron emission tomography,Magnetic resonance imaging, perfusion-weighted, diffusion-weighted,Surrogate markers

                Comments

                Comment on this article