41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification of Metabolites in the Normal Ovary and Their Transformation in Primary and Metastatic Ovarian Cancer

      research-article
      1 , 3 , 1 , 2 , *
      PLoS ONE
      Public Library of Science

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this study, we characterized the metabolome of the human ovary and identified metabolic alternations that coincide with primary epithelial ovarian cancer (EOC) and metastatic tumors resulting from primary ovarian cancer (MOC) using three analytical platforms: gas chromatography mass spectrometry (GC/MS) and liquid chromatography tandem mass spectrometry (LC/MS/MS) using buffer systems and instrument settings to catalog positive or negative ions. The human ovarian metabolome was found to contain 364 biochemicals and upon transformation of the ovary caused changes in energy utilization, altering metabolites associated with glycolysis and β-oxidation of fatty acids—such as carnitine (1.79 fold in EOC, p<0.001; 1.88 fold in MOC, p<0.001), acetylcarnitine (1.75 fold in EOC, p<0.001; 2.39 fold in MOC, p<0.001), and butyrylcarnitine (3.62 fold, p<0.0094 in EOC; 7.88 fold, p<0.001 in MOC). There were also significant changes in phenylalanine catabolism marked by increases in phenylpyruvate (4.21 fold; p = 0.0098) and phenyllactate (195.45 fold; p<0.0023) in EOC. Ovarian cancer also displayed an enhanced oxidative stress response as indicated by increases in 2-aminobutyrate in EOC (1.46 fold, p = 0.0316) and in MOC (2.25 fold, p<0.001) and several isoforms of tocopherols. We have also identified novel metabolites in the ovary, specifically N-acetylasparate and N-acetyl-aspartyl-glutamate, whose role in ovarian physiology has yet to be determined. These data enhance our understanding of the diverse biochemistry of the human ovary and demonstrate metabolic alterations upon transformation. Furthermore, metabolites with significant changes between groups provide insight into biochemical consequences of transformation and are candidate biomarkers of ovarian oncogenesis. Validation studies are warranted to determine whether these compounds have clinical utility in the diagnosis or clinical management of ovarian cancer patients.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: found
          • Article: found

          On the origin of cancer cells.

          O WARBURG (1956)
            • Record: found
            • Abstract: found
            • Article: not found

            Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression.

            Multiple, complex molecular events characterize cancer development and progression. Deciphering the molecular networks that distinguish organ-confined disease from metastatic disease may lead to the identification of critical biomarkers for cancer invasion and disease aggressiveness. Although gene and protein expression have been extensively profiled in human tumours, little is known about the global metabolomic alterations that characterize neoplastic progression. Using a combination of high-throughput liquid-and-gas-chromatography-based mass spectrometry, we profiled more than 1,126 metabolites across 262 clinical samples related to prostate cancer (42 tissues and 110 each of urine and plasma). These unbiased metabolomic profiles were able to distinguish benign prostate, clinically localized prostate cancer and metastatic disease. Sarcosine, an N-methyl derivative of the amino acid glycine, was identified as a differential metabolite that was highly increased during prostate cancer progression to metastasis and can be detected non-invasively in urine. Sarcosine levels were also increased in invasive prostate cancer cell lines relative to benign prostate epithelial cells. Knockdown of glycine-N-methyl transferase, the enzyme that generates sarcosine from glycine, attenuated prostate cancer invasion. Addition of exogenous sarcosine or knockdown of the enzyme that leads to sarcosine degradation, sarcosine dehydrogenase, induced an invasive phenotype in benign prostate epithelial cells. Androgen receptor and the ERG gene fusion product coordinately regulate components of the sarcosine pathway. Here, by profiling the metabolomic alterations of prostate cancer progression, we reveal sarcosine as a potentially important metabolic intermediary of cancer cell invasion and aggressivity.
              • Record: found
              • Abstract: found
              • Article: found

              The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes.

              Cells from some tumors use an altered metabolic pattern compared with that of normal differentiated adult cells in the body. Tumor cells take up much more glucose and mainly process it through aerobic glycolysis, producing large quantities of secreted lactate with a lower use of oxidative phosphorylation that would generate more adenosine triphosphate (ATP), water, and carbon dioxide. This is the Warburg effect, which provides substrates for cell growth and division and free energy (ATP) from enhanced glucose use. This metabolic switch places the emphasis on producing intermediates for cell growth and division, and it is regulated by both oncogenes and tumor suppressor genes in a number of key cancer-producing pathways. Blocking these metabolic pathways or restoring these altered pathways could lead to a new approach in cancer treatments.

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                19 May 2011
                : 6
                : 5
                : e19963
                Affiliations
                [1 ]Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky, United States of America
                [2 ]James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
                [3 ]Metabolon, Inc., Durham, North Carolina, United States of America
                University of Nebraska Medical Center, United States of America
                Author notes

                Conceived and designed the experiments: MYF SSK JM. Performed the experiments: MYF SSK JM. Analyzed the data: MYF SSK JM. Contributed reagents/materials/analysis tools: MYF SSK JM. Wrote the paper: MYF SSK JM.

                Article
                PONE-D-11-04402
                10.1371/journal.pone.0019963
                3098284
                21625518
                a1cb1ffd-5017-4d86-bdef-b4e4e238bc9a
                Fong et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 1 March 2011
                : 15 April 2011
                Page count
                Pages: 12
                Categories
                Research Article
                Medicine
                Diagnostic Medicine
                Pathology
                General Pathology
                Biomarkers
                Oncology
                Basic Cancer Research
                Metastasis
                Tumor Physiology
                Cancers and Neoplasms
                Gynecological Tumors
                Ovarian Cancer
                Cancer Detection and Diagnosis

                Uncategorized
                Uncategorized

                Comments

                Comment on this article

                Related Documents Log