29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Form and function of the human and chimpanzee forefoot: implications for early hominin bipedalism

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          During bipedal walking, modern humans dorsiflex their forefoot at the metatarsophalangeal joints (MTPJs) prior to push off, which tightens the plantar soft tissues to convert the foot into a stiff propulsive lever. Particular features of metatarsal head morphology such as “dorsal doming” are thought to facilitate this stiffening mechanism. In contrast, chimpanzees are believed to possess MTPJ morphology that precludes high dorsiflexion excursions during terrestrial locomotion. The morphological affinity of the metatarsal heads has been used to reconstruct locomotor behavior in fossil hominins, but few studies have provided detailed empirical data to validate the assumed link between morphology and function at the MTPJs. Using three-dimensional kinematic and morphometric analyses, we show that humans push off with greater peak dorsiflexion angles at all MTPJs than do chimpanzees during bipedal and quadrupedal walking, with the greatest disparity occurring at MTPJ 1. Among MTPJs 2–5, both species exhibit decreasing peak angles from medial to lateral. This kinematic pattern is mirrored in the morphometric analyses of metatarsal head shape. Analyses of Australopithecus afarensis metatarsals reveal morphology intermediate between humans and chimpanzees, suggesting that this species used different bipedal push-off kinematics than modern humans, perhaps resulting in a less efficient form of bipedalism.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          The locomotor anatomy of Australopithecus afarensis.

          The postcranial skeleton of Australopithecus afarensis from the Hadar Formation, Ethiopia, and the footprints from the Laetoli Beds of northern Tanzania, are analyzed with the goal of determining (1) the extent to which this ancient hominid practiced forms of locomotion other than terrestrial bipedality, and (2) whether or not the terrestrial bipedalism of A. afarensis was notably different from that of modern humans. It is demonstrated that A. afarensis possessed anatomic characteristics that indicate a significant adaptation for movement in the trees. Other structural features point to a mode of terrestrial bipedality that involved less extension at the hip and knee than occurs in modern humans, and only limited transfer of weight onto the medial part of the ball of the foot, but such conclusions remain more tentative than that asserting substantive arboreality. A comparison of the specimens representing smaller individuals, presumably female, to those of larger individuals, presumably male, suggests sexual differences in locomotor behavior linked to marked size dimorphism. The males were probably less arboreal and engaged more frequently in terrestrial bipedalism. In our opinion, A. afarensis from Hadar is very close to what can be called a "missing link." We speculate that earlier representatives of the A. afarensis lineage will present not a combination of arboreal and bipedal traits, but rather the anatomy of a generalized ape.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Complete fourth metatarsal and arches in the foot of Australopithecus afarensis.

            The transition to full-time terrestrial bipedality is a hallmark of human evolution. A key correlate of human bipedalism is the development of longitudinal and transverse arches of the foot that provide a rigid propulsive lever and critical shock absorption during striding bipedal gait. Evidence for arches in the earliest well-known Australopithecus species, A. afarensis, has long been debated. A complete fourth metatarsal of A. afarensis was recently discovered at Hadar, Ethiopia. It exhibits torsion of the head relative to the base, a direct correlate of a transverse arch in humans. The orientation of the proximal and distal ends of the bone reflects a longitudinal arch. Further, the deep, flat base and tarsal facets imply that its midfoot had no ape-like midtarsal break. These features show that the A. afarensis foot was functionally like that of modern humans and support the hypothesis that this species was a committed terrestrial biped.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The foot of Homo floresiensis.

              Homo floresiensis is an endemic hominin species that occupied Liang Bua, a limestone cave on Flores in eastern Indonesia, during the Late Pleistocene epoch. The skeleton of the type specimen (LB1) of H. floresiensis includes a relatively complete left foot and parts of the right foot. These feet provide insights into the evolution of bipedalism and, together with the rest of the skeleton, have implications for hominin dispersal events into Asia. Here we show that LB1's foot is exceptionally long relative to the femur and tibia, proportions never before documented in hominins but seen in some African apes. Although the metatarsal robusticity sequence is human-like and the hallux is fully adducted, other intrinsic proportions and pedal features are more ape-like. The postcranial anatomy of H. floresiensis is that of a biped, but the unique lower-limb proportions and surprising combination of derived and primitive pedal morphologies suggest kinematic and biomechanical differences from modern human gait. Therefore, LB1 offers the most complete glimpse of a bipedal hominin foot that lacks the full suite of derived features characteristic of modern humans and whose mosaic design may be primitive for the genus Homo. These new findings raise the possibility that the ancestor of H. floresiensis was not Homo erectus but instead some other, more primitive, hominin whose dispersal into southeast Asia is still undocumented.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                28 July 2016
                2016
                : 6
                : 30532
                Affiliations
                [1 ]Department of Anatomical Sciences, Stony Brook University , Stony Brook, NY 11794, USA
                [2 ]Department of Human Evolutionary Biology, Harvard University , Cambridge, MA 02138, USA
                [3 ]Association Vahatra , BP 3972, Antananarivo 101, Madagascar
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                srep30532
                10.1038/srep30532
                4964565
                27464580
                a1cc10c9-36f3-419e-b057-aa1066b7d216
                Copyright © 2016, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 22 February 2016
                : 30 June 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article