+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Effect of Shiga Toxin on Weibel-Palade Bodies in Primary Human Endothelial Cells

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Background/Aims: Diarrhea-associated hemolytic uremic syndrome is associated with the presence of Shiga toxin (Stx1, Stx2 and several variants) in the circulation. The aim of this study is to examine the possible triggering effect of Stx1 on the exocytosis of Weibel-Palade bodies (WPbs). Methods: Cultured human umbilical venous endothelial cells (HUVECs) and glomerular microvascular endothelial cells (GMVECs) were stimulated by thrombin and Stx1 in both static and flowing conditions. The amount of secreted von Willebrand factor (VWF) in the supernatant as well as the remaining intracellular fraction was determined. Results: In HUVECs and in 2 out of 4 GMVECs, the stimulation of Stx1 in flow at 1 dyne/cm<sup>2</sup> resulted in a decrease of intracellular VWF. This is contrary to the results of Stx1 applied in static conditions. At a higher flow rate of 5 dyne/cm<sup>2</sup>, no effect in GMVECs was observed. Conclusion: Stx1 can contribute, via an effect on WPbs, to the exocytosis of WPbs in flow conditions in HUVECs and probably in GMVECs. This results in the release of VWF, suggesting an initiating role of the coagulation system in the pathogenesis.

          Related collections

          Most cited references 28

          • Record: found
          • Abstract: found
          • Article: not found

          Shiga-toxin-producing Escherichia coli and haemolytic uraemic syndrome.

          Most cases of diarrhoea-associated haemolytic uraemic syndrome (HUS) are caused by Shiga-toxin-producing bacteria; the pathophysiology differs from that of thrombotic thrombocytopenic purpura. Among Shiga-toxin-producing Escherichia coli (STEC), O157:H7 has the strongest association worldwide with HUS. Many different vehicles, in addition to the commonly suspected ground (minced) beef, can transmit this pathogen to people. Antibiotics, antimotility agents, narcotics, and non-steroidal anti-inflammatory drugs should not be given to acutely infected patients, and we advise hospital admission and administration of intravenous fluids. Management of HUS remains supportive; there are no specific therapies to ameliorate the course. The vascular injury leading to HUS is likely to be well under way by the time infected patients seek medical attention for diarrhoea. The best way to prevent HUS is to prevent primary infection with Shiga-toxin-producing bacteria.
            • Record: found
            • Abstract: found
            • Article: not found

            Dynamics and plasticity of Weibel-Palade bodies in endothelial cells.

            Agonist-induced release of endothelial cell specific storage granules, designated Weibel-Palade bodies (WPBs), provides the endothelium with the ability to rapidly respond to changes in its micro-environment. Originally being defined as an intracellular storage pool for von Willebrand factor (VWF), it has recently been shown that an increasing number of other components, including P-selectin, interleukin (IL)-8, eotaxin-3, endothelin-1, and angiopoietin-2, is present within this subcellular organelle, implicating a role for WPB exocytosis in inflammation, hemostasis, regulation of vascular tone and angiogenesis. Recent studies emphasize that WPBs provide a dynamic storage compartment whose contents can be regulated depending on the presence of inflammatory mediators in the vascular micro-environment. Additionally, release of WPBs is tightly regulated and feedback mechanisms have been identified that prevent excessive release of bioactive components from this subcellular organelle. The ability to regulate both contents and exocytosis of WPBs endows these endothelial cell specific organelles with a remarkable plasticity. This is most likely needed to allow for controlled delivery of bioactive components into the circulation on vascular perturbation.
              • Record: found
              • Abstract: found
              • Article: not found

              Thrombin generates previously unidentified C5 products that support the terminal complement activation pathway.

              The coagulation and complement pathways simultaneously promote homeostasis in response to injury but cause tissue damage when unregulated. Mechanisms by which they cooperate are poorly understood. To delineate their interactions, we studied the effects of thrombin and C5 convertase on C5 in purified and plasma-based systems, measuring release of the anaphylatoxin C5a, and generation of C5b, the initial component of the lytic membrane attack complex. Thrombin cleaved C5 poorly at R751, yielding minimal C5a and C5b. However, thrombin efficiently cleaved C5 at a newly identified, highly conserved R947 site, generating previously undescribed intermediates C5(T) and C5b(T). Tissue factor-induced clotting of plasma led to proteolysis of C5 at a thrombin-sensitive site corresponding to R947 and not R751. Combined treatment of C5 with thrombin and C5 convertase yielded C5a and C5b(T), the latter forming a C5b(T)-9 membrane attack complex with significantly more lytic activity than with C5b-9. Our findings provide a new paradigm for complement activation, in which thrombin and C5 convertase are invariant partners, enhancing the terminal pathway via the generation of newly uncovered C5 intermediates. Delineating the molecular links between coagulation and complement will provide new therapeutic targets for diseases associated with excess fibrin deposition and complement activation.

                Author and article information

                Nephron Extra
                S. Karger AG
                May – August 2014
                08 July 2014
                : 4
                : 2
                : 101-107
                aDepartment of Paediatric Nephrology, and bCentral Hematology Laboratory, Radboud University Nijmegen Medical Centre, Nijmegen, cDepartment of Plasma Proteins, Sanquin Research, Amsterdam, and dDepartment of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands
                Author notes
                *Joyce Geelen, Bornsestraat 15, NL-7595 LH Weerselo (The Netherlands), E-Mail
                363299 PMC4130816 Nephron Extra 2014;4:101-107
                © 2014 S. Karger AG, Basel

                Open Access License: This is an Open Access article licensed under the terms of the Creative Commons Attribution-NonCommercial 3.0 Unported license (CC BY-NC) (, applicable to the online version of the article only. Distribution permitted for non-commercial purposes only. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 4, Tables: 1, Pages: 7
                Original Paper


                Comment on this article