Blog
About

8
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      3D-printed patient-specific applications in orthopedics

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          With advances in both medical imaging and computer programming, two-dimensional axial images can be processed into other reformatted views (sagittal and coronal) and three-dimensional (3D) virtual models that represent a patients’ own anatomy. This processed digital information can be analyzed in detail by orthopedic surgeons to perform patient-specific orthopedic procedures. The use of 3D printing is rising and has become more prevalent in medical applications over the last decade as surgeons and researchers are increasingly utilizing the technology’s flexibility in manufacturing objects. 3D printing is a type of manufacturing process in which materials such as plastic or metal are deposited in layers to create a 3D object from a digital model. This additive manufacturing method has the advantage of fabricating objects with complex freeform geometry, which is impossible using traditional subtractive manufacturing methods. Specifically in surgical applications, the 3D printing techniques can not only generate models that give a better understanding of the complex anatomy and pathology of the patients and aid in education and surgical training, but can also produce patient-specific surgical guides or even custom implants that are tailor-made to the surgical requirements. As the clinical workflow of the 3D printing technology continues to evolve, orthopedic surgeons should embrace the latest knowledge of the technology and incorporate it into their clinical practice for patient-specific orthopedic applications. This paper is written to help orthopedic surgeons stay up-to-date on the emerging 3D technology, starting from the acquisition of clinical imaging to 3D printing for patient-specific applications in orthopedics. It 1) presents the necessary steps to prepare the medical images that are required for 3D printing, 2) reviews the current applications of 3D printing in patient-specific orthopedic procedures, 3) discusses the potential advantages and limitations of 3D-printed custom orthopedic implants, and 4) suggests the directions for future development. The 3D printing technology has been reported to be beneficial in patient-specific orthopedics, such as in the creation of anatomic models for surgical planning, education and surgical training, patient-specific instruments, and 3D-printed custom implants. Besides being anatomically conformed to a patient’s surgical requirement, 3D-printed implants can be fabricated with scaffold lattices that may facilitate osteointegration and reduce implant stiffness. However, limitations including high cost of the implants, the lead time in manufacturing, and lack of intraoperative flexibility need to be addressed. New biomimetic materials have been investigated for use in 3D printing. To increase utilization of 3D printing technology in orthopedics, an all-in-one computer platform should be developed for easy planning and seamless communications among different care providers. Further studies are needed to investigate the real clinical efficacy of 3D printings in orthopedic applications.

          Video abstract

          Related collections

          Most cited references 42

          • Record: found
          • Abstract: found
          • Article: not found

          Fabrication methods of porous metals for use in orthopaedic applications.

          Implant stability is not only a function of strength but also depends on the fixation established with surrounding tissues [Robertson DM, Pierre L, Chahal R. Preliminary observations of bone ingrowth into porous materials. J Biomed Mater Res 1976;10:335-44]. In the past, such stability was primarily achieved using screws and bone cements. However, more recently, improved fixation can be achieved by bone tissue growing into and through a porous matrix of metal, bonding in this way the implant to the bone host. Another potentially valuable property of porous materials is their low elastic modulus. Depending on the porosity, moduli can even be tailored to match the modulus of bone closer than solid metals can, thus reducing the problems associated with stress shielding. Finally, extensive body fluid transport through the porous scaffold matrix is possible, which can trigger bone ingrowth, if substantial pore interconnectivity is established [Cameron HU, Macnab I, Pilliar RM. A porous metal system for joint replacement surgery. Int J Artif Organs 1978;1:104-9; Head WC, Bauk DJ, Emerson Jr RH. Titanium as the material of choice for cementless femoral components in total hip arthroplasty. Clin Orthop 1995;85-90]. Over the years, a variety of fabrication processes have been developed, resulting in porous implant substrates that can address unresolved clinical problems. The advantages of metals exhibiting surface or bulk porosity have led researchers to conduct systematic research aimed at clarifying the fundamental aspects of interactions between porous metals and hard tissue. This review summarises all known methods for fabricating such porous metallic scaffolds.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Improved accuracy of alignment with patient-specific positioning guides compared with manual instrumentation in TKA.

            Coronal malalignment occurs frequently in TKA and may affect implant durability and knee function. Designed to improve alignment accuracy and precision, the patient-specific positioning guide is predicated on restoration of the overall mechanical axis and is a multifaceted new tool in achieving traditional goals of TKA. We compared the effectiveness of patient-specific positioning guides to manual instrumentation with intramedullary femoral and extramedullary tibial guides in restoring the mechanical axis of the extremity and achieving neutral coronal alignment of the femoral and tibial components. We retrospectively reviewed 569 TKAs performed with patient-specific positioning guides and 155 with manual instrumentation by two surgeons using postoperative long-leg radiographs. For all patients, we assessed the zone in which the overall mechanical axis passed through the knee, and for one surgeon's cases (105 patient-specific positioning guide, 55 manual instrumentation), we also measured the hip-knee-ankle angle and the individual component angles with respect to their mechanical axes. The overall mechanical axis passed through the central third of the knee more often with patient-specific positioning guides (88%) than with manual instrumentation (78%). The overall mean hip-knee-ankle angle for patient-specific positioning guides (180.6°) was similar to manual instrumentation (181.1°), but there were fewer ± 3° hip-knee-ankle angle outliers with patient-specific positioning guides (9%) than with manual instrumentation (22%). The overall mean tibial (89.9° versus 90.4°) and femoral (90.7° versus 91.3°) component angles were closer to neutral with patient-specific positioning guides than with manual instrumentation, but the rate of ± 2° outliers was similar for both the tibia (10% versus 7%) and femur (22% versus 18%). Patient-specific positioning guides can assist in achieving a neutral mechanical axis with reduction in outliers.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Direct metal fabrication of titanium implants with tailored materials and mechanical properties using electron beam melting technology

                Bookmark

                Author and article information

                Journal
                Orthop Res Rev
                Orthop Res Rev
                Orthopedic Research and Reviews
                Orthopedic Research and Reviews
                Dove Medical Press
                1179-1462
                2016
                14 October 2016
                : 8
                : 57-66
                Affiliations
                Department of Orthopedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, skcwong@ 123456ort.cuhk.edu.hk
                Author notes
                Correspondence: Kwok Chuen Wong, Department of Orthopedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, Tel +852 2632 3947, Fax +852 2637 7889, Email skcwong@ 123456ort.cuhk.edu.hk
                Article
                orr-8-057
                10.2147/ORR.S99614
                6209352
                © 2016 Wong. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Categories
                Review

                Comments

                Comment on this article