6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      On Quasinormal Modes for Scalar Perturbations of Static Spherically Symmetric Black Holes in Nash Embedding Framework

      , ,
      Advances in High Energy Physics
      Hindawi Limited

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this paper we investigate scalar perturbations of black holes embedded in a five-dimensional bulk space. The quasinormal frequencies of such black holes are calculated using the third order of Wentzel, Kramers, and Brillouin (WKB) approximation for scalar perturbations. The high overtones of quasinormal modes indicate a resonant-like set of black holes suggesting a serious constraint of embedding models in five dimensions.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          A Large Mass Hierarchy from a Small Extra Dimension

          We propose a new higher-dimensional mechanism for solving the Hierarchy Problem. The Weak scale is generated from a large scale of order the Planck scale through an exponential hierarchy. However, this exponential arises not from gauge interactions but from the background metric (which is a slice of AdS_5 spacetime). This mechanism relies on the existence of only a single additional dimension. We demonstrate a simple explicit example of this mechanism with two three-branes, one of which contains the Standard Model fields. The experimental consequences of this scenario are new and dramatic. There are fundamental spin-2 excitations with mass of weak scale order, which are coupled with weak scale as opposed to gravitational strength to the standard model particles. The phenomenology of these models is quite distinct from that of large extra dimension scenarios; none of the current constraints on theories with very large extra dimensions apply.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            An Alternative to Compactification

            Conventional wisdom states that Newton's force law implies only four non-compact dimensions. We demonstrate that this is not necessarily true in the presence of a non-factorizable background geometry. The specific example we study is a single 3-brane embedded in five dimensions. We show that even without a gap in the Kaluza-Klein spectrum, four-dimensional Newtonian and general relativistic gravity is reproduced to more than adequate precision.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Stability of a Schwarzschild Singularity

                Bookmark

                Author and article information

                Journal
                Advances in High Energy Physics
                Advances in High Energy Physics
                Hindawi Limited
                1687-7357
                1687-7365
                2017
                2017
                : 2017
                :
                : 1-10
                Article
                10.1155/2017/9891231
                a1dd8934-01bc-4604-9f1d-d8b4f3b8c4ba
                © 2017

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article