Blog
About

43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sugar, Uric Acid, and the Etiology of Diabetes and Obesity

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The intake of added sugars, such as from table sugar (sucrose) and high-fructose corn syrup has increased dramatically in the last hundred years and correlates closely with the rise in obesity, metabolic syndrome, and diabetes. Fructose is a major component of added sugars and is distinct from other sugars in its ability to cause intracellular ATP depletion, nucleotide turnover, and the generation of uric acid. In this article, we revisit the hypothesis that it is this unique aspect of fructose metabolism that accounts for why fructose intake increases the risk for metabolic syndrome. Recent studies show that fructose-induced uric acid generation causes mitochondrial oxidative stress that stimulates fat accumulation independent of excessive caloric intake. These studies challenge the long-standing dogma that “a calorie is just a calorie” and suggest that the metabolic effects of food may matter as much as its energy content. The discovery that fructose-mediated generation of uric acid may have a causal role in diabetes and obesity provides new insights into pathogenesis and therapies for this important disease.

          Related collections

          Most cited references 90

          • Record: found
          • Abstract: found
          • Article: not found

          Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans.

          Studies in animals have documented that, compared with glucose, dietary fructose induces dyslipidemia and insulin resistance. To assess the relative effects of these dietary sugars during sustained consumption in humans, overweight and obese subjects consumed glucose- or fructose-sweetened beverages providing 25% of energy requirements for 10 weeks. Although both groups exhibited similar weight gain during the intervention, visceral adipose volume was significantly increased only in subjects consuming fructose. Fasting plasma triglyceride concentrations increased by approximately 10% during 10 weeks of glucose consumption but not after fructose consumption. In contrast, hepatic de novo lipogenesis (DNL) and the 23-hour postprandial triglyceride AUC were increased specifically during fructose consumption. Similarly, markers of altered lipid metabolism and lipoprotein remodeling, including fasting apoB, LDL, small dense LDL, oxidized LDL, and postprandial concentrations of remnant-like particle-triglyceride and -cholesterol significantly increased during fructose but not glucose consumption. In addition, fasting plasma glucose and insulin levels increased and insulin sensitivity decreased in subjects consuming fructose but not in those consuming glucose. These data suggest that dietary fructose specifically increases DNL, promotes dyslipidemia, decreases insulin sensitivity, and increases visceral adiposity in overweight/obese adults.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Comparison of the Atkins, Zone, Ornish, and LEARN diets for change in weight and related risk factors among overweight premenopausal women: the A TO Z Weight Loss Study: a randomized trial.

            Popular diets, particularly those low in carbohydrates, have challenged current recommendations advising a low-fat, high-carbohydrate diet for weight loss. Potential benefits and risks have not been tested adequately. To compare 4 weight-loss diets representing a spectrum of low to high carbohydrate intake for effects on weight loss and related metabolic variables. Twelve-month randomized trial conducted in the United States from February 2003 to October 2005 among 311 free-living, overweight/obese (body mass index, 27-40) nondiabetic, premenopausal women. Participants were randomly assigned to follow the Atkins (n = 77), Zone (n = 79), LEARN (n = 79), or Ornish (n = 76) diets and received weekly instruction for 2 months, then an additional 10-month follow-up. Weight loss at 12 months was the primary outcome. Secondary outcomes included lipid profile (low-density lipoprotein, high-density lipoprotein, and non-high-density lipoprotein cholesterol, and triglyceride levels), percentage of body fat, waist-hip ratio, fasting insulin and glucose levels, and blood pressure. Outcomes were assessed at months 0, 2, 6, and 12. The Tukey studentized range test was used to adjust for multiple testing. Weight loss was greater for women in the Atkins diet group compared with the other diet groups at 12 months, and mean 12-month weight loss was significantly different between the Atkins and Zone diets (P<.05). Mean 12-month weight loss was as follows: Atkins, -4.7 kg (95% confidence interval [CI], -6.3 to -3.1 kg), Zone, -1.6 kg (95% CI, -2.8 to -0.4 kg), LEARN, -2.6 kg (-3.8 to -1.3 kg), and Ornish, -2.2 kg (-3.6 to -0.8 kg). Weight loss was not statistically different among the Zone, LEARN, and Ornish groups. At 12 months, secondary outcomes for the Atkins group were comparable with or more favorable than the other diet groups. In this study, premenopausal overweight and obese women assigned to follow the Atkins diet, which had the lowest carbohydrate intake, lost more weight at 12 months than women assigned to follow the Zone diet, and had experienced comparable or more favorable metabolic effects than those assigned to the Zone, Ornish, or LEARN diets [corrected] While questions remain about long-term effects and mechanisms, a low-carbohydrate, high-protein, high-fat diet may be considered a feasible alternative recommendation for weight loss. clinicaltrials.gov Identifier: NCT00079573.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A causal role for uric acid in fructose-induced metabolic syndrome.

              The worldwide epidemic of metabolic syndrome correlates with an elevation in serum uric acid as well as a marked increase in total fructose intake (in the form of table sugar and high-fructose corn syrup). Fructose raises uric acid, and the latter inhibits nitric oxide bioavailability. Because insulin requires nitric oxide to stimulate glucose uptake, we hypothesized that fructose-induced hyperuricemia may have a pathogenic role in metabolic syndrome. Four sets of experiments were performed. First, pair-feeding studies showed that fructose, and not dextrose, induced features (hyperinsulinemia, hypertriglyceridemia, and hyperuricemia) of metabolic syndrome. Second, in rats receiving a high-fructose diet, the lowering of uric acid with either allopurinol (a xanthine oxidase inhibitor) or benzbromarone (a uricosuric agent) was able to prevent or reverse features of metabolic syndrome. In particular, the administration of allopurinol prophylactically prevented fructose-induced hyperinsulinemia (272.3 vs.160.8 pmol/l, P < 0.05), systolic hypertension (142 vs. 133 mmHg, P < 0.05), hypertriglyceridemia (233.7 vs. 65.4 mg/dl, P < 0.01), and weight gain (455 vs. 425 g, P < 0.05) at 8 wk. Neither allopurinol nor benzbromarone affected dietary intake of control diet in rats. Finally, uric acid dose dependently inhibited endothelial function as manifested by a reduced vasodilatory response of aortic artery rings to acetylcholine. These data provide the first evidence that uric acid may be a cause of metabolic syndrome, possibly due to its ability to inhibit endothelial function. Fructose may have a major role in the epidemic of metabolic syndrome and obesity due to its ability to raise uric acid.
                Bookmark

                Author and article information

                Journal
                Diabetes
                Diabetes
                diabetes
                diabetes
                Diabetes
                Diabetes
                American Diabetes Association
                0012-1797
                1939-327X
                October 2013
                17 September 2013
                : 62
                : 10
                : 3307-3315
                Affiliations
                1Division of Kidney Diseases and Hypertension, University of Colorado Denver, Aurora, Colorado
                2Division of Nephrology, Eastern Colorado Health Care System, Department of Veteran Affairs, Denver, Colorado
                3TMK Project, Medical Innovation Center, Kyoto University, Kyoto, Japan
                4Laboratory of Renal Physiopathology and Department of Nephrology, Instituto Nacional de Cardiologia I.Ch., Mexico City, Mexico
                5Renal Associates, San Antonio and Del Rio, Texas
                6Division of Pediatric Gastroenterology, Children’s Hospital, Aurora, Colorado
                7Division of Nephrology, Hypertension and Renal Transplantation, University of Florida, Gainesville, Florida.
                Author notes
                Corresponding author: Richard J. Johnson, richard.johnson@ 123456ucdenver.edu .
                Article
                1814
                10.2337/db12-1814
                3781481
                24065788
                © 2013 by the American Diabetes Association.

                Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

                Page count
                Pages: 9
                Product
                Categories
                Perspectives in Diabetes

                Endocrinology & Diabetes

                Comments

                Comment on this article