6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      In vitro model of bone to facilitate measurement of adhesion forces and super-resolution imaging of osteoclasts

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To elucidate processes in the osteoclastic bone resorption, visualise resorption and related actin reorganisation, a combination of imaging technologies and an applicable in vitro model is needed. Nanosized bone powder from matching species is deposited on any biocompatible surface in order to form a thin, translucent, smooth and elastic representation of injured bone. Osteoclasts cultured on the layer expressed matching morphology to ones cultured on sawed cortical bone slices. Resorption pits were easily identified by reflectance microscopy. The coating allowed actin structures on the bone interface to be visualised with super-resolution microscopy along with a detailed interlinked actin networks and actin branching in conjunction with V-ATPase, dynamin and Arp2/3 at actin patches. Furthermore, we measured the timescale of an adaptive osteoclast adhesion to bone by force spectroscopy experiments on live osteoclasts with bone-coated AFM cantilevers. Utilising the in vitro model and the advanced imaging technologies we localised immunofluorescence signals in respect to bone with high precision and detected resorption at its early stages. Put together, our data supports a cyclic model for resorption in human osteoclasts.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Capturing complex 3D tissue physiology in vitro.

          The emergence of tissue engineering raises new possibilities for the study of complex physiological and pathophysiological processes in vitro. Many tools are now available to create 3D tissue models in vitro, but the blueprints for what to make have been slower to arrive. We discuss here some of the 'design principles' for recreating the interwoven set of biochemical and mechanical cues in the cellular microenvironment, and the methods for implementing them. We emphasize applications that involve epithelial tissues for which 3D models could explain mechanisms of disease or aid in drug development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cellular mechanisms of bone remodeling

            Bone remodeling is a tightly regulated process securing repair of microdamage (targeted remodeling) and replacement of old bone with new bone through sequential osteoclastic resorption and osteoblastic bone formation. The rate of remodeling is regulated by a wide variety of calcitropic hormones (PTH, thyroid hormone, sex steroids etc.). In recent years we have come to appreciate that bone remodeling proceeds in a specialized vascular structure,—the Bone Remodeling Compartment (BRC). The outer lining of this compartment is made up of flattened cells, displaying all the characteristics of lining cells in bone including expression of OPG and RANKL. Reduced bone turnover leads to a decrease in the number of BRCs, while increased turnover causes an increase in the number of BRCs. The secretion of regulatory factors inside a confined space separated from the bone marrow would facilitate local regulation of the remodeling process without interference from growth factors secreted by blood cells in the marrow space. The BRC also creates an environment where cells inside the structure are exposed to denuded bone, which may enable direct cellular interactions with integrins and other matrix factors known to regulate osteoclast/osteoblast activity. However, the denuded bone surface inside the BRC also constitutes an ideal environment for the seeding of bone metastases, known to have high affinity for bone matrix. Circulating osteoclast- and osteoblast precursor cells have been demonstrated in peripheral blood. The dominant pathway regulating osteoclast recruitment is the RANKL/OPG system, while many different factors (RUNX, Osterix) are involved in osteoblast differentiation. Both pathways are modulated by calcitropic hormones.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate.

              Under most conditions, resorbed bone is nearly precisely replaced in location and amount by new bone. Thus, it has long been recognized that bone loss through osteoclast-mediated bone resorption and bone replacement through osteoblast-mediated bone formation are tightly coupled processes. Abundant data conclusively demonstrate that osteoblasts direct osteoclast differentiation. Key questions remain, however, as to how osteoblasts are recruited to the resorption site and how the amount of bone produced is so precisely controlled. We hypothesized that osteoclasts play a crucial role in the promotion of bone formation. We found that osteoclast conditioned medium stimulates human mesenchymal stem (hMS) cell migration and differentiation toward the osteoblast lineage as measured by mineralized nodule formation in vitro. We identified candidate osteoclast-derived coupling factors using the Affymetrix microarray. We observed significant induction of sphingosine kinase 1 (SPHK1), which catalyzes the phosphorylation of sphingosine to form sphingosine 1-phosphate (S1P), in mature multinucleated osteoclasts as compared with preosteoclasts. S1P induces osteoblast precursor recruitment and promotes mature cell survival. Wnt10b and BMP6 also were significantly increased in mature osteoclasts, whereas sclerostin levels decreased during differentiation. Stimulation of hMS cell nodule formation by osteoclast conditioned media was attenuated by the Wnt antagonist Dkk1, a BMP6-neutralizing antibody, and by a S1P antagonist. BMP6 antibodies and the S1P antagonist, but not Dkk1, reduced osteoclast conditioned media-induced hMS chemokinesis. In summary, our findings indicate that osteoclasts may recruit osteoprogenitors to the site of bone remodeling through SIP and BMP6 and stimulate bone formation through increased activation of Wnt/BMP pathways.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                03 March 2016
                2016
                : 6
                : 22585
                Affiliations
                [1 ]Laboratory of Biophysics, Department of Cell Biology and Anatomy and Medicity Research Laboratories, University of Turku , Turku, Finland
                [2 ]Department of Cell Biology and Anatomy, University of Turku , Turku, Finland
                [3 ]Pharmatest Services Ltd , Turku, Finland
                [4 ]Department of Anatomy and Cell Biology, Institute of Biomedicine, University of Oulu , Oulu, Finland
                [5 ]Department of Neuroscience, Karolinska Institutet , Stockholm, Sweden
                Author notes
                Article
                srep22585
                10.1038/srep22585
                4776281
                26935172
                a1ef2ec2-f975-4310-bd77-7c59dd0cc4b6
                Copyright © 2016, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 12 November 2015
                : 18 February 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article